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Abstract

In recent years there has been a proliferation of privately owned sensing

devices such as GPS devices, cameras, home weather stations and, more im-

portantly, smart-phones. Most of these devices are either intrinsically mobile,

e.g., smart-phones and GPS devices, or can be easily carried by people during

their daily activities. Nowadays, it is possible to embed various sensors in

small devices as the result of sensor technology advancement. For example,

we can consider smart-phones as sensing devices because they are equipped

with several sensors such as GPS, accelerometer, gyroscope, microphone, and

proximity sensors.

This provides an unprecedented opportunity for a new application paradigm

called participatory sensing, in which people collect and share sensing data

about some phenomenon of interest in their environment. This unique op-

portunity is mainly due to (I) the ubiquity of smart-phones with various

built-in sensors, (II) the availability of small, low-cost and pluggable sensors,

and (III) the easy access to various connectivity media such as 3G, 4G, and

WiFi. However, for using the full potential of participatory sensing, several

challenges exist that must be addressed. These challenges include, but are not

limited to, privacy protection of participants, quality assessment of collected

data, efficient energy consumption of sensing devices, data unavailability due

to uncontrolled mobility of the participants, and efficiently incentivizing peo-

ple to participate. In this thesis we propose methods for addressing some of

these issues. In particular, this thesis addresses the following topics:

Efficient Data Acquisition in Participatory Sensing. In participatory

sensing systems participant often require to make effort for data collection

and sharing, which includes the consumption of limited resources on their de-

vices. Some people might altruistically participate in such systems. However,

it is not realistic to assume that all participants offer this effort altruistically.

Therefore, adequate incentives must be given to people to participate. One

common approach is to provide the participants with monetary incentives.

Additionally, data need not be constantly collected at all places. In many

applications, data collection is necessary only when there is some utility for

the data. The difference between the value of the collected data to the appli-

cation and the data collection cost is defined as the utility of the data. We

propose a data acquisition framework in Chapter 3 for participatory sens-

ing systems. This framework takes into account the major factors pertinent
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to this context and efficiently shares sensor data among queries of different

types with the objective of maximizing the total utility. Queries for sen-

sor data can come from multiple different applications with arbitrary utility

considerations.

Truthful Data Elicitation in Participatory Sensing. In participatory

sensing systems, some participants might have incentives to report wrong

data. For example, a participant might report higher costs for her data

or wrong location tags for the data with the objective of receiving higher

payments. Therefore, it is critical to prevent dishonest behavior of partic-

ipants by appropriately designing the participatory system. We follow a

game-theoretic approach towards addressing this problem in Chapter 4 by

designing incentive compatible and individually rational mechanisms for col-

lecting cost information and measurements from the participants. Moreover,

we propose mechanisms for truthful data elicitation for privacy conscious

participants by allowing them to make trade-offs between their privacy and

monetary compensation.

Quality Assessment for Sensor Data. In order to determine the utility

of the sensor data collected in participatory sensing systems, it is essential to

assess the quality of the data. Several outlier detection techniques in sensor

networks exist that classify the data as being normal or outlier. Some of these

approaches can be adapted to assess the quality of data in sensor networks.

In Chapter 5, we propose a novel online pattern-based quality assessment for

sensor streams. We use itemset mining to find a frequent correlated pattern,

consisting of the given sensor value (the tested value) and the sensor values

on other streams that occur at the same time as the tested value (the context)

that maximizes the logistic regression function in the sensor stream seen so

far. The quality score is computed by combining the following features of the

frequent pattern: 1) the relative frequency of the pattern, 2) the conditional

probability of the tested value given the context, and 3) the relative size of

the pattern with respect to the number of streams.

Keywords: participatory sensing, privacy, one-shot query, continuous query,

quality assessment, utility, mechanism design, optimization, frequent itemset

mining, incentive compatible
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Résumé

Ces dernières années ont vu la prolifération de capteurs personnels tels que

les GPS, appareils photos, station météorologiques amateurs, et plus im-

portant encore, les smartphones. La plupart des appareils sont mobiles par

natures e.g. smartphones, GPS, ou peuvent être portés par les utilisateurs

dans leurs activités quotidiennes. Grace à l’avancée technologique dont ont

bénéficié les capteurs, il est désormais possible de les intégrer dans de petits

appareils. Par example, nous pouvons considerer les smartphones comme

outil d’enregistrement car ils sont équipés de plusieurs capteurs tels que GPS,

accéléromètre, gyroscope, microphone et capteur de proximité.

Cette avancée technologique offre une opportunité sans précédent de créer un

nouveau paradigme appelé participatory sensing, dans lequel les utilisateurs

captent et partagent des données en rapport avec un phénomène particuliers

lié à leur environnement. Cette opportunité est principalement due à (I)

l’omnipresence des smartphones avec leurs capteurs embarqués, (II) la pos-

sibilité d’avoir des capteurs de petite taille, à bas coup et adaptable aux

smartphone et (III) la facilité d’accès aux différents types de connexion tels

que 3G, 4G ou WiFi. Néanmoins, afin d’utiliser pleinement le potentiel du

participatory sensing, plusieurs défis doivent être relevés. Ces défis inclu-

ent en autre, la protection de la vie privée des participants, la vérification

de la qualités des données collectées, l’efficacité énergétique des capteurs,

les problèmes liés à la disponibilités des données lors des déplacements de

l’utilisateur et la motivation des utilisateurs afin d’augmenter leur adhérence.

Dans cette thèse, nous proposons plusieurs méthodes répondants à ces défis.

Acquisition efficace de données dans le contexte du participatory

sensing. Dans le contexte du participatory sensing, les participants doivent

souvent fournir des efforts particuliers afin de collecter et partager des données,

comme par exemple l’utilisation d’une partie des resources de leurs appareils.

Certaines personnes altruistes peuvent adhérer à ce système spontanément,

cependant nous ne pouvons pas nous attendre à ce que tout les participants

fournissent cet effort sans rien en échange. Afin de pallier ce problème, les

utilisateurs doivent être incités à participer. Une approche courante est de

proposer une contrepartie financière aux participants. De plus, les données

ne doivent pas nécessairement être collectées constamment et en tout lieux.

Dans de nombreuses applications, la collection de données n’est nécessaire

v
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que lors que ces données sont utiles. La différence entre la valeurs des données

collectées et le cout d’acquisition de ces données est définit comme étant

l’utilité de ces données. Nous proposons, dans le chapitre 3 de cette thèse,

un framework d’acquisition de données dans le cadre du participatory sens-

ing. Ce framework prend en compte les facteurs les plus importants dans ce

contexte et met en place un système efficace de partage des données collectées

provenant de différentes requêtes, avec pour but de maximiser l’utilité totale.

Les demandes pour ces données peuvent provenir de plusieurs applications

avec différentes definition de l’utilité.

Obtention des données authentiques dans le participatory sensing.

Dans les systèmes de participatory sensing, les participants peuvent avoir

intérêt à fournir de fausses données. Par exemple, un participant pourrait

indiquer un prix plus élevé que nécessaire pour ses données, ou alors fournir de

fausse données de géolocalisation avec pour objectif de recevoir plus d’argent.

C’est pour cela qu’il est primordial d’empêcher les comportement malicieux

des participants en concevant judicieusement le système participatif. En

nous basant sur la théorie des jeux, nous définissons dans le chapitre 4 des

mécanismes compatibles en motivation et individuellement rationnels afin

de collecter des informations sur les couts des données et les données en

elles memes. De plus, nous proposons des mécanismes permettant d’obtenir

uniquement les données authentiques et ce, dans le respect de la vie privée

des participants en leur permettant de définir un compromis entre leur vie

privée et la compensation financière.

Evaluation de qualité des données collectées. Afin d’évaluer l’utilité

des données collectées par un système de participatory sensing, il est essen-

tiel d’estimer la qualité et la confiance que l’on peut accorder à ces données.

Plusieurs méthodes de detection de données aberrantes pour les réseaux de

capteurs existent déjà et permettent de classifier les données comme étant

normales ou anormales. Plusieurs de ces approaches peuvent être adaptées

afin d’estimer la qualité des données de réseaux de capteurs. Dans le chapitre

5, nous proposons une nouvelle méthode basée sur la reconnaissance de mo-

tifs, permettant d’estimer à la volée la qualité que l’on peut attribuer à des

données. Nous recherchons des ensembles d’items (itemset mining) afin de

corréler des motifs, en nous basant sur la valeur retournée par le capteur

(la valeur testée) et les données provenant d’autres streams (le contexte),

qui arrivent dans la même fenêtre de temps que la valeur testée, et qui max-

imisent la fonction de regression logistique dans les streams qui ont été évalués

jusqu’ici. L’indice de qualité est calculé en combinant les caractéristiques du

motif suivantes: 1) la fréquence relative du motif, 2) la probabilité de la
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valeur testée conditionné par le contexte, 3) la taille relative du motif, par

rapport au nombre de streams.

Mots clés : participatory sensing, vie privée, requête en une fois, requête

continue, évaluation de qualité, utilité, conception des mécanismes d’incitation,

optimisation, recherche d’ensemble d’items, compatibilité en motivation



www.manaraa.com



www.manaraa.com

Contents

Acknowledgment i

Abstract iii
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Chapter 1
Introduction

1.1 Background

In the recent years we have been witnessing a proliferation of privately owned sensing

devices such as GPS devices, cameras, home weather stations and, more importantly,

smart-phones. In addition, most of these devices are intrinsically mobile, e.g., smart-

phones and GPS devices, or can be easily carried by people. The advancement in sensor

technology has made it possible to have various sensors in small hand-held devices.

For example, smart-phones nowadays are equipped with several sensors such as GPS,

accelerometer, gyroscope, lux meter, microphone, and proximity sensors. Therefore, we

can consider mobile phones as sensing devices.

This provides an unprecedented opportunity for a new application paradigm called

participatory sensing, where ordinary people collect and share sensing data about some

phenomenon of interest [18]. The unique enablers of participatory sensing applications

are (I) the ubiquity of smart-phones with built-in sensors, (II) small, low-cost and plug-

gable sensors, and (III) the availability of several connectivity media such as 3G, 4G,

and WiFi. Participatory sensing applications span areas such as public health and well-

being [24, 34, 107], urban planning [35, 83], environmental monitoring [6, 32, 62], and

transportation and traffic monitoring [14, 43, 52, 86, 92, 128].

The term participatory sensing has been used in the literature to refer to the sensing

applications in which participant’s intervention is necessary in the sensing and sharing

process [18]. On the other hand, the term opportunistic sensing has been used for

sensing applications where the participant does not intervene (at least not actively) in

the sensing and sharing process [19]. However, the level of participation or involvement

in the process can vary from one application to another or even from one participant

to another. Therefore, we can use the general term crowdsensing to refer to the wide

spectrum of user participation. In this case, participatory sensing and opportunistic

sensing reside at the extremes of the spectrum. The term mobile crowdsensing is used

1
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in [42] to refer to this broad range of community sensing applications. Other names that

have been used in the literature to refer to the same concept of crowdsensing include

community sensing [68], urban sensing [19], people-centric sensing [19, 20], and citizen

sensing [18].

In this thesis, however, we use the term participatory sensing regardless of the

level of user involvement in the sensing process. The reason is twofold: (I) the described

phenomenon is widely known in the community by the name participatory sensing ; and

(II) by using the name participatory sensing we emphasize that people participate in

collecting and sharing data using their mobile devices in contrast to deploying privately-

owned stationary or mobile sensor networks. In fact, in participatory sensing even these

stationary or mobile sensor networks can be regarded as participants. Throughout this

thesis, the terms participant and user are used interchangeably. In cases where clear

distinction is required between users of the system and the data collectors, we use the

term end user to refer to the ultimate user of the system.

Participatory sensing enables applications and scenarios which could not be achieved

by privately-owned sensor network deployments because they were economically not

viable or technically not feasible. In particular, contrary to the sensor network deploy-

ments, the participatory sensing paradigm takes advantage of the following facts.

• Participatory sensing takes advantage of the mobility of participants. People have

different mobility patterns: each person has his/her specific itinerary, which can

also change according to the time of the day or week. Therefore, a large enough

number of participants can collectively cover a wide area of the desired sensing

region at any time of the day.

• There is no need to install and maintain sensing devices since the sensing devices are

either built in mobile phones or come as low-cost, pluggable, and packed extensions

that can easily be purchased and attached to the mobile phones.

• The connectivity media such as 3G or WiFi access points are widely available and

used by people. Thus, there is no need to separately install and enable connectivity

in the deployment process.

• Contextual information from participants can be inferred and used to enrich the

knowledge gained from the sensed data and also to provide the participants with

personalized feedback.

Motivated by the cost-effectiveness, scalability and wide coverage of sensing offered

by participatory sensing, a vast range of applications is envisioned. For example, Haze

Watch [21] provides the participants with sensing devices that can be mounted on their

vehicles. These devices measure carbon monoxide, ozone, sulphur dioxide, and nitrogen

dioxide. The measurements are transferred to the participant’s smartphone through

Bluetooth interface. The mobile phone then sends the data along with GPS coordinates

and time to the server. A pollution map is constructed based on the collected data.
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The participants exposure to pollutants can be measured and displayed on their mobile

phones. Similarly, Safecast [3] is a participatory sensing project aiming at collecting

radioactive radiations in large scale so as to create high resolution radiation maps. People

who volunteer to collect data receive sensing devices that can be mounted on their cars.

Radiation level measurements are taken by these devices and sent to a server. The

radiation level data collected in this manner is claimed to have higher geographical

resolution and better consistency than the data reported by the government. Chapter 2

provides a review of the existing participatory sensing initiatives.

1.2 Research Challenges in Participatory Sensing

In order to use the potential of participatory sensing to its full extent, there are several

challenges that must be addressed. Researchers have already identified these challenges,

e.g., in [61, 63]. Consequently, the research community has started providing solutions

for some of these challenges. The key research challenges in participatory sensing are

the following.

Preserving participant privacy. Humans are at the heart of participatory sensing.

By participating, people might directly or indirectly reveal sensitive information about

themselves and their surroundings. For example, it is often essential to tag the mea-

surements with the location where they are taken. This could threaten the participants’

privacy. Consequently, people who are concerned about their privacy might lose their

incentive for participation. Mechanisms are required to ensure preserving user’s privacy

to a desired level. At the same time, mechanisms should be put in place to ensure a

certain quality of data knowing that most of the privacy preserving mechanisms disturb

data quality.

Assuring and assessing integrity of data. In participatory sensing, several factors

can impact the quality of data. Because of mobility of participants, in some regions the

number of data collectors might not be enough for the purpose of the applications. Pri-

vacy protecting mechanisms might restrict the areas and times of taking measurements,

which could lead to data unavailability. In addition, quality of data can be reduced

mainly because of three sources of data distortion: (I) privacy protection mechanisms

which add noise to data, (II) malfunctioning sensing devices for example due to cal-

ibration problems, and (III) malicious users who intentionally modify data. Effective

mechanisms are needed to assess the quality of data collected by the participants and

to ensure a certain quality level for each application that uses the data.

Inferring user context. In many applications, it is necessary to infer the context

and activity of users to enrich the data collected or to give personalized service to the

users. For example, if a user wants to get automatic updates about current safe jogging

tracks, in addition to her current location, the system needs to know that the user is
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indeed jogging. Embedded sensors in mobile phones such as GPS, microphone, and

accelerometer can be used to enable this task. While addressing the task of inferring

context and user activities, energy efficiency and user privacy must be considered as they

are tightly coupled with this task.

Energy-efficient data collection. Participatory sensing largely relies on partici-

pants’ mobile devices (e.g., smartphones) for taking measurements, process and transmit

them. However, these mobile devices often have a limited source of energy. Users would

like to prolong the discharging time of the batteries on their mobile phones so as to use

their devices for their main activities, such as making phone calls, etc., without recharg-

ing them frequently. Therefore, it is essential for participatory sensing systems to be as

energy-efficient as possible.

Incentivizing participation. Distributed systems, in which participants interact

freely without any centralized authority require robust incentives to ensure contribu-

tion. Since participatory sensing systems are also not owned by anyone in particular,

they too require the provision of social and economic incentives for participants. These

include incentives for following the protocol; abstaining from malicious activities; and

contributing their resources. The design of such incentive schemes could be guided by

various approaches, including mechanism design, heterodox economics, and other so-

cially inspired mechanisms.

1.3 Contributions

In this thesis work, we made the following main contributions towards addressing some

of the research challenges in participatory sensing, individually or jointly.

1.3.1 Utility-driven data acquisition in participatory sensing

Participating in a participatory sensing system requires some level of effort from the

participants. This includes lending their limited resources to data collection and sharing.

We cannot assume that all participants offer this effort altruistically. Therefore, some

strong incentives should be given to people to participate. One common approach is to

provide the participants with some monetary incentives. Moreover, data need not be

collected and shared all the times at all places. In many applications, data is required

only when there is some utility for it. Utility is defined as the difference between the value

of the collected data to the application and the data collection cost. For example, when

there is at least one query asking for measurements about the state of a phenomenon

at a specific place or region and the application can provide the cost of collection of

certain measurements, the system can ask some participants to provide the required

data. In this thesis, we propose a utility-driven framework for efficient data collection

in participatory sensing. In particular we make the following contributions:
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• We propose a data acquisition framework in the context of participatory sensing

that takes into account the factors pertinent to this context and efficiently shares

sensor data among queries of different types. Queries for sensor data come from

multiple different applications or users that can have any arbitrary utility consid-

erations.

• We formulate the optimal data acquisition problem as a multi-query optimization

with the objective of maximizing the total utility (or social welfare) and propose

efficient heuristic solutions for various query types and query mixes.

• Important query categories, including one-shot and continuous queries, in the con-

text of participatory sensing are considered and efficient data acquisition algo-

rithms are proposed for each query type as well as the combination of different

query types.

1.3.2 Truthful data elicitation in participatory sensing

In participatory sensing systems, participants are not always truthful and sometimes

have incentives to report falsified data. For example, one participant might think that

by reporting a higher cost for her data or by tagging the data with a wrong location, she

can receive a higher payment. As an another example, in an air pollution data collection

scenario, the participant might be involved in generating the pollutants. In this case,

she has strong incentives to report wrong measurements. Therefore, it is essential to

devise mechanisms to detect and prevent untruthful behavior of participants. In this

thesis, we propose a game-theoretic approach towards addressing this problem by de-

signing incentive compatible and individually rational mechanisms for collecting cost and

measurements from the participants. Specifically, we make the following contributions.

• We formulate the problem of optimal data acquisition for multiple point queries and

we propose incentive compatible mechanisms for truthful cost and data elicitation

in participatory sensory context.

• We also propose mechanisms for truthful data elicitation when participants are

privacy conscious by allowing the agents to make trade-offs between their privacy

and monetary compensation. Our mechanisms perform this trade-off in order to

maximize the utility of the center.

1.3.3 Quality assessment of sensor data streams

Assessing quality of data collected in participatory sensing systems is an essential task for

determining the utility of the data. There exists a large body of work in outlier detection

in sensor networks. Some of the proposed approaches can be adapted to assess the quality

of data in sensor networks. In this thesis, we propose a novel online pattern-based quality

assessment for sensor data streams. Even though this approach was proposed for data

streams which come from stationary sensors, we believe that similar principles can be
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used for trust assessment in participatory sensing, where sensors are often mobile. In

summary, we make the following contributions.

• We use itemset mining to find a frequent correlated pattern, consisting of the tested

value and a context that maximizes the logistic regression in the sensor data stream

seen so far. Tested value is the stream value for which the trust is computed and

context refers to the sensor values on other streams having the same timestamps

as the tested value.

• We compute a quality score for a tested value using the following features of the

pattern: 1) the relative frequency of the pattern, 2) the conditional probability

of the tested value given the context, and 3) the relative size of the pattern with

respect to the number of streams.

1.4 Thesis Organization

We start the remainder of the thesis by surveying the state of the art relevant to this

thesis in Chapter 2. In Chapter 3 we introduce our framework for utility-based data

collection in participatory sensing and present our proposed algorithms for efficient data

collection given different types of queries. Chapter 4 is devoted to our mechanism design

approach for truthful data elicitation in participatory sensing. We present our incentive

compatible and individually rational mechanisms and through simulations demonstrates

different properties of these mechanisms. Our frequent pattern-based technique for as-

sessing quality of sensor data is presented in Chapter 5. Lastly, we conclude the thesis

in Chapter 6 and lay out detailed future work.
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data. IEEE MDM 2014 - 15th IEEE International Conference on Mobile Data

Management, Brisbane, Australia, 2014. (Chapter 5)
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Chapter 2
Background

2.1 Introduction

In this chapter we review the literature related to this thesis. In particular, we review

the research work regarding the concept of participatory sensing and its challenges, as

well as participatory sensing campaigns and projects in this area. We also review the

state of the art in data collection and query processing mechanisms in participatory

sensing and sensor networks. Since one of the contributions of this thesis is the proposal

of truthful mechanisms for eliciting data in participatory sensing, we provide a review

of the related work in truthful data elicitation. We also survey the state of the art

techniques in quality assessment of sensor data.

The rest of this chapter is organized as follows. In Section 2.2 we provide a detailed

review of research work related to the concept of participatory sensing and its pertinent

research challenges. In addition, we provide a list of participatory sensing projects and

review their characteristics. In Section 2.3, the related work regarding efficient data

collection mechanisms in participatory sensing systems and traditional wireless sensor

networks is reviewed. Section 2.4 briefly reviews the relevant work in the area of query

processing and query optimization in sensor networks. This section together with Section

2.3 serves as the background for our contribution in Chapter 3. Section 2.5 is devoted to

reviewing the state of the art techniques in truthful data elicitation from participants,

not necessarily in the context of participatory sensing. This section aims to provide

the necessary background for our contribution in Chapter 4. Lastly, in Section 2.6,

we review the related work regarding quality assessment of sensor data streams. This

section provides the required background for our contribution in Chapter 5 regarding

quality assessment of sensor data.

7



www.manaraa.com

2.2 Participatory Sensing Applications

2.2.1 Background

The concept of participatory sensing was first introduced in [18]. It states that partici-

patory sensing takes advantage of everyday mobile devices to create interactive, partic-

ipatory sensor networks to empower ordinary people as well as professionals to collect,

analyze, and share information about a local phenomenon. By placing the users at

the center of the sensing process and increasing the quantity, quality, and credibility

of collected data, participatory sensing is deemed to improve existing data collection

and analysis efforts, such as small-scale research-oriented data collection campaigns or

autonomous stationary and wireless sensor networks.

With the idea of moving from traditional small-scale, single-purpose, and application-

specific wireless sensor networks to large-scale and general-purpose sensor networks that

can directly benefit the general public, [19] introduced the concept of people-centric

sensing. In people-centric sensing, humans are at the center of the sensing activities;

people and their surroundings are being sensed by people.

MetroSense is an opportunistic sensor network architecture proposed in [19] to en-

able large-scale people-sensing applications. The sensor network is called opportunistic

because it takes advantage of the sensing and communication opportunity provided by

mobile sensors carried by people. MetroSense enables interactions between mobile sen-

sors, stationary sensors, and edge wireless access points to achieve opportunistic tasking,

sensing, and data collection.

2.2.2 Applications

In recent years a new class of applications has emerged which is based on the participa-

tory sensing paradigm. These applications not only use the environmental data collected

by the users, but also can infer and utilize the context and activities of the users. These

applications are categorized into people-centric and environment-centric applications by

[23]. People-centric applications use the sensors embedded into mobile phones to collect

and analyze user activities. Environment-centric applications take advantage of exter-

nal sensors or sensors integrated into mobile phones to measure some parameters of the

environment. However, in many cases applications in these two groups overlap. For

example, the user context and activity can be inferred and combined with environmen-

tal measurements to provide personalized recommendations for the users. Based on the

phenomenon being sensed, [42] classifies the participatory sensing applications into three

classes: environmental applications which measure a natural environmental factor such

as air pollution; infrastructure applications which collect data about a public infrastruc-

ture such as traffic congestion and road conditions; and social applications which enable

the users to share information and achieve a social benefit. In the following we present

a finer-grained classification of participatory sensing applications and for each class we

review some representative examples. A more comprehensive overview of the existing

participatory sensing applications can be found in [65] and [23].
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Air quality monitoring. Haze Watch [21] provides the participants with sensing de-

vices that can be mounted on their vehicles. These devices measure carbon monoxide

(CO), ozone (O3), sulphur dioxide (SO2), and nitrogen dioxide (NO2). The measure-

ments are transferred to the participant’s smartphone through Bluetooth interface. The

mobile phone tags the data with time and location and sends it to the server. The

data collected is used to construct a pollution map. The exposure of the participants to

pollutants can be measured and displayed on their mobile phones.

PollutionSpy [62] is a prototype application for measuring air pollution in traffic

using mobile phones and generating pollution maps. The pollution map can be viewed

on the mobile phone using the locally collected data. The mobile phone can also send

the data to a remote server. A Web interface is provided for viewing the pollution maps

created based on the reported measurements by the participants. External sensors such

as CO, CO2, NO, NO2, SO2, temperature, and windspeed are connected to the mobile

phone using a Bluetooth interface.

Other examples of participatory sensing systems for air quality monitoring are Com-

mon Sense [32, 100] and OpenSense [6].

Noise and ambiance monitoring. NoiseTube [83] converts the mobile phones into

noise monitoring devices by providing an application that runs on the mobile phones

and continuously measures the loudness of the environmental sound captured by the

phone’s microphone. The application displays real-time pollution maps on the phone

from the noise measurements combined with GPS location information. Individually

collected data can be transferred to a server in order to create collective noise pollution

maps. Participants can semantically tag the noise levels to specify the pollution sources

or location information in places where GPS cannot be used.

MetroTrack [8] is a mobile-event tracking system that uses mobile phones carried by

people. In particular MetroTrack uses the microphones on the mobile phones to detect

the noise source and estimate its distance to the mobile phone. The future location of the

noise source is predicted based on a distributed Kalman-Consensus filtering algorithm.

Mobile phones collaborate with each other to track the source noise by forwarding the

tracking tasks to the phones that are closer to the predicted future location of the target.

Further examples of noise and ambiance monitoring applications are NoiseSpy [62],

SoundSense [78], EarPhone [106], MoVi [12] and community maps for London Thames

gateway [35].

Other environmental hazard monitoring. Safecast [3] is a participatory sensing

project aiming at collecting radiation measurements in large scale so as to create high

resolution radiation maps. People who volunteer to collect data receive sensing devices

that can be mounted on their cars. Radiation level measurements are taken by these

devices and sent to a server. Primarily deployed in Japan, the radiation level data

collected is claimed to have higher geographical resolution and better consistency than

the data reported by the government.
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Community-based sensors have also been used for detecting earthquakes [39]. In the

prototype application, built-in accelerometer sensors in the mobile phones, stand-alone

sensors, and accelerometer sensors that are connected through USB to host computers

are used for rapidly detecting earthquakes. These heterogeneous sensors are managed

by a cloud computing platform that runs data fusion algorithms and issues real-time

early-warning of seismic hazards.

Traffic monitoring. A cooperative public transport tracking participatory system is

proposed in [127] that uses mobile phones to track the public transport vehicles with the

ultimate goal of improving the passengers experience. When a user is riding in a public

transport vehicle, the mobile phone periodically sends location information to a central

tracking server. An automatic approach using accelerometer data is used to determine

whether a user is riding in a vehicle. A spatio-temporal trajectory matching mechanism

is used to determine if a user is riding a public transport vehicle, and if so which one. For

tracking underground public transport a different approach is proposed because in the

underground environment GPS-based or WiFi-based localization cannot be employed.

CarTel system [52] deploys dedicated sensing and computing devices equipped with

GPS sensors on cars to opportunistically obtain information about traffic delays ob-

served as cars move and to use that information in traffic monitoring and route planning

applications. CarTel relies on intermittent connectivity through WiFi or Bluetooth to

the centralized server by creating a delay-tolerant network stack. By analyzing the time

it takes a participant to commute to work, CarTel can determine traffic congestion, and

visualize jammed roads on a map.

Other examples of participatory traffic monitoring applications include Nericell [92],

Mobile Millennium [14], VTrack [128], and GreenGPS [43].

Public infrastructure monitoring. The Pothole Patrol [37] deploys dedicated sens-

ing devices on cars for detecting and reporting road surface conditions. Potholes and

other rough road surface anomalies are detected using accelerometer data combined with

GPS localization data. The large-scale and continuous road surface condition monitoring

is made possible thanks to the inherent mobility of the participants and opportunistic

data collection.

ParkNet [86] is a participatory sensing system for monitoring road-side parking space

occupancy. The sensing platform consists of a low-cost ultrasonic sensor that reports

the distance to the nearest obstacle and a GPS receiver that specifies the corresponding

location. The sensor devices are deployed in vehicles that opportunistically collect and

report parking space availability to a server. The server provides a real-time parking

occupancy of the city.

Further sample participatory sensing applications for monitoring civil infrastructures

include participatory risk management [56], participatory waste management [97], and

road bump monitor [25].
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Personalized health monitoring. Jog Falls [95] is a system for monitoring patients

energy expenditure and calorie intake with the goal of providing them with continu-

ous awareness of their diet and activities. Energy expenditure, i.e., calories burned, is

automatically calculated by combining heart rate and accelerometer data captured by

wearable sensors. Jog Falls provides an interface for the patients to enter their calorie

intake, and monitor their trends and goals. It also provides a backend interface for

the physician to monitor the progress and compliance of the patients and give them

necessary advice/coaching to better manage chronic disease conditions.

MobAsthma [62] is an asthma monitoring system that can provide the patients with

real-time exposure to pollution. It can also monitor the asthma condition of the patients

and alert medical staff in case of detecting asthma attacks. This application enables

asthma specialists and allergists to study the relationship between the asthma and res-

piratory problems and the personal exposure to air pollution. The required data can be

provided by medical devices such as asthma peak-flow combined with other air pollu-

tion sensors and GPS coordinates connected to the mobile phone through the Bluetooth

interface.

Additional examples of participatory sensing applications for monitoring personal

health conditions include UbiFit Garden [24], HyperFit [54], DietSense [107], Health-

Sense [125], HealthAware [44], BALANCE [28], SPA [114] and the work in [9], which is

applicable for pediatric obesity applications.

Measuring exposure to environmental factors. In PEIR (Personal Environmen-

tal Impact Report,) air quality parameters are not measured by the participants. How-

ever, PEIR is a participatory sensing system which enables users to use their mobile

phones to find out their exposure to CO2 and PM 2.5 particulates [94]. The partici-

pant’s mobile phone continuously sends GPS and cell tower location traces to a server.

The server in turn determines the participant’s transportation mode and her trajectory.

This information, combined with the input from weather station reports, traffic condi-

tions, and vehicle emission models, enables PEIR to calculate participant’s exposure to

CO2 and particles.

ExposureSense [103] is a mobile participatory sensing infrastructure that combines

activity recognition on the mobile phones with external air quality data from OpenSense

[6] to determine participant’s exposure to air pollutants. In addition, external pluggable

sensors such as O3 can directly provide air quality data to the application on the mobile

phone.

Monitoring and recording sport activities. Biketastic [117] is a participatory

sensing projects in which bikers use their mobile phones that are quipped with GPS

localization and accelerometer sensors to collect and share data about their biking routes

and the roughness of the roads they are commuting on. Sound samples from the phone’s

microphone can be used to document the noise level of the routes. In addition to

personal use of the collected data, participants can share their gathered data among
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each other. This information can be combined with existing data such as air quality,

traffic conditions and traffic accident to enable the bikers to select their desirable biking

routes. For example, one can choose a route with minimum exposure to noise or air

pollutants, or a route with minimal probability of accident.

BikeNet [34] is another participatory sensing application that collects and shares

data about biking performance and road and environmental conditions using several

peripheral sensing devices. Sensing devices and the biker’s mobile phone create a Bike

Area Network. The BikeNet system can operate in delay tolerant sensing or real-time

sensing modes depending on whether the mobile phone can transfer the data to the back

end in real-time. When two bicycles meet each other, they can exchange data to facil-

itate data transfer to the back end. Cyclist performance and fitness data collected and

stored by the system include: current speed, average speed, distance traveled, calories

burned, path incline, heart rate, and galvanic skin response (as an indicator of emotional

excitement or stress level). The cyclists are provided with real-time information about

the healthiness of their routes in terms of air quality, allergen levels, noise levels, and

roughness of the road. The environmental data can be shared with the larger commu-

nity. Environmental data fused with cyclists performance measurements can provide a

holistic picture of the cycling experience.

SkiScape [33] and UbiFit Garden [24] are other examples of participatory sensing

applications for documenting sport activities.

Enhancing social media and public awareness. NutriSmart [142] is a participa-

tory sensing application with the goal of eliminating “food deserts”, the communities

lacking enough healthy and fresh food choices. The users log their food purchase ex-

perience including the type of food they are consuming and the places where they are

purchasing the food. By aggregating data from the participants, the system can detect

problematic areas, i.e., areas with a lack of grocery stores or access to fresh food and ar-

eas with a high concentration of fast food restaurants. With this participatory collection

of evidence, people and authorities can react to eliminate the detected “food deserts”.

The objective of MicroBlog [45] is to enable a high resolution view of the world by

building a “virtual information telescope” consisting of billions of mobile phones acting

as its “virtual lenses”. Participants record multimedia blogs, including pictures, video,

audio, etc., using their mobile phones. Enriched with other physical sensor readings and

geotagged, the blogs are uploaded to a remote server to create a global map that can be

consulted by the public. Users browse the maps and look for their desired information.

If the information is not found, the system can submit a query that is answered either

by the participants or by the sensor readings automatically collected.

CenceMe [90, 91] and MoVi [12] are further examples of participatory sensing appli-

cations which aim at enhancing user experience with social networking.
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Price monitoring. MobiShop [111] is a participatory sensing application for collect-

ing, processing, and delivering product price information from street-side shops to po-

tential buyers. Using her mobile phone, a participant takes pictures of the shop receipt,

which lists the products bought by the user and their prices. This information is ex-

tracted by an Optical Character Recognition (OCR) application and transmitted, along

with the GPS location of the user and the time of the purchase, to a central server.

The server maintains the updated prices of products for each shop. Users can query

the server for the price of particular products in the shops in their neighborhood. Each

query contains the GPS location of the user. The server returns a list of shops in the

vicinity of the user containing the requested product and their prices. LiveCompare [27]

is another application for participatory product price collection.

PetrolWatch [31] takes advantage of mobile phones of the participants equipped

with cameras to take pictures of fuel prices on the road-side price boards of gas stations.

Tagged with time and location information, these pictures are transferred to a central

server. The server runs computer vision algorithms to extract price information from

the pictures. It is assumed that mobile phones are placed in positions where the cameras

are facing the road-side so that the cameras can automatically take pictures of the price

boards. With the help of a GIS application and GPS location of the vehicle, the camera

can be automatically commanded to take pictures when the vehicle approaches a gas

station.

2.2.3 Discussion

In Chapter 1 we identified the key research challenges in participatory sensing applica-

tions as preserving participant privacy, data integrity assurance and assessment, inferring

user context, resource-efficient data collection, and incentivizing participants. Each of

the applications outlined in this section addresses one or more of these challenges and

ignores the rest. In this thesis we propose methods for addressing some of these key

research challenges that can complement the existing approaches taken in the current

participatory sensing applications. In particular, we assume that monetary compensa-

tion can be provided to participants to encourage their long-lasting participation. In

order for this incentive mechanism to be efficient, given the existing requests for data,

we propose a framework for data collection in participatory sensing by selecting the best

set of participants for collecting the required data at each time period. In this regard, in

Section 2.3 and Section 2.4, we review the related work in the areas of sensor selection

and query processing in sensor networks and participatory sensing as our approach is

built on the ideas from these research fields.

In this thesis, we also present mechanisms that incentivize the participants to report

true information about their costs and measurements. Our contribution in this regards

is based on the concepts and ideas from the research area of truthful data elicitation in

information systems. We provide a review of the state of the art in this area in Section

2.5. Finally, towards addressing the important challenge of quality assessment of the

collected data, we propose a novel method for quality assessment of sensor readings,
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with primary target of stationary sensor networks. The related work regarding this

contribution is presented in Section 2.6.

2.3 Sensor Selection

There is a large body of work in the field of sensor selection, placement, and scheduling

in wireless sensor networks. In this section, we review some representative works in the

area of sensor selection. Before reviewing the state of the art in sensor selection, we

formally define the problem of sensor selection. We also provide an introduction to the

concept of submodularity as it is widely used in sensor selection schemes.

2.3.1 Sensor Selection Problem

Efficient data collection for query processing in sensor networks, where the sensors are

energy-constrained and resource-limited, boils down to selecting appropriate sensors so

as to achieve a specific objective such as maximizing the coverage of the field and/or

maximizing the lifetime of the network. Sensor selection schemes aim to select a subset

of sensors such that the total utility is maximized while the total cost does not exceed

the budget or the total cost is minimized. Maximizing utility and minimizing cost are

two conflicting goals. Therefore, the goal of sensor selection schemes is to find the

best utility-cost tradeoff. Formally, given a set S = {s1, s2, . . . , sn} of sensors, a sensor

selection scheme tries to find the best subset S′ ⊆ S in order to achieve its specific

objective. In this thesis we define utility as the difference between the value of the

selected sensors to the application and the cost of selecting those sensors. Let v(S′)

denote a function that gives the value of the sensors in subset S′ for the application and

c(S′) a function that gives the cost of selecting sensors in S′, then the utility of sensors

in S′ is given by

u(S′) = v(S′)− c(S′). (2.1)

A sensor selection scheme with the goal of maximizing utility, finds the subset S∗ ⊆ S
such that

S∗ = arg max
S′⊆S

u(S′). (2.2)

The sensor selection problem with arbitrary v(.) and c(.) functions is a hard problem.

For example, in a simple setting where v(S′) =
∑

s∈S′ v(s), c(S′) =
∑

s∈S′ c(s), and

c(S′) ≤ B, where B is a constant, the sensor selection problem is NP-hard because it

can be converted to the KNAPSACK Problem [53].

2.3.2 Submodularity

A set function is a function f : 2S → R that maps each subset A ⊆ S to a value f(A),

where S is a finite set and 2S denotes power set. Submodularity is a property of set

functions that is defined as follows.
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Figure 2.1: Graphical illustration of the diminishing return property of the sensor cov-
erage function G. When s3 is added to the set {s1, s4}, the increase in coverage is
more than when it is added to the set {s1, s2, s4}; G({s1, s2, s3, s4}) − G({s1, s2, s4}) ≤
G({s1, s3, s4})− G({s1, s4}).

Definition 2.1. (Submodularity) A function f : 2S → R is submodular if for every

A,B ⊆ S it holds that

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2.3)

Submodular functions have a natural diminishing return property, which states that

the marginal increase in the function decreases as the size of the input set increases. The

following definition of submodularity, which is equivalent to the above definition, better

demonstrates this property.

Definition 2.2. (Submodularity) A function f : 2S → R is submodular if for every

A ⊆ B ⊆ S and x ∈ S\B it holds that

f(B ∪ {x})− f(B) ≤ f(A ∪ {x})− f(A). (2.4)

A function which does not decrease as the size of the input set increases is called a

monotone function. Monotone submodular functions constitute an important subclass

of submodular functions.

Definition 2.3. (Monotonicity) A function f : 2S → R is monotone if for every A ⊆
B ⊆ S, f(A) ≤ f(B).

Example 2.1. Assume that each sensor s is capable of measuring a phenomenon in a

disk with radius rs centered at s. This area is called sensing range or coverage of s.

The sensors are spread in a rectangular area R. Let G(A) be a function that gives the

aggregate coverage of the sensors in set A. G is a monotone submodular function. Figure

2.1 graphically illustrates the diminishing return property of the submodular function

G.
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2.3.3 Overview of Existing Work in Sensor Selection

A survey study of sensor selection schemes in wireless sensor networks is provided in

[109], which based on the purpose of selection, classifies sensor selection schemes into

four categories: (1) coverage schemes in which sensors are selected so that the com-

plete coverage of the field is achieved; (2) target tracking and localization schemes where

sensors are selected to track or localize target objects; (3) single mission assignment

schemes in which sensors are selected in a way that a specific mission, that is repeatedly

performed over time, is accomplished most efficiently; and (4) multiple mission assign-

ment schemes in which multiple missions are accomplished in the most efficient way by

selecting the appropriate set of sensors. In the following we present an overview of sensor

selection approaches in three categories: centralized sensor selection, distributed sensor

selection, and sensor selection in participatory sensing.

2.3.3.1 Centralized Sensor Selection

A utility-based sensor selection framework is proposed in [16] in which applications can

specify the utility of each set of sensors in a wireless sensor network. The goal is to select

a sequence of sets to maximize the total utility while not exceeding the available energy.

Two utility function classes, namely submodular and supermodular, are studied and

the algorithmic performance characteristics are identified for each class. Supermodular

functions have the opposite property of submodular functions. In addition, geometric

penalty functions in which the utility of measurements are inversely related to distance

of the measurements from targets are studied. A tiered sensor network architecture

is considered in this work, which consists of a large number of small battery-powered

sensors that send data to smaller number of more powerful nodes in the upper tier.

A heuristic approach based on convex optimization is proposed in [58] for the sensor

selection problem with the objective of minimizing the estimation error. In this paper,

the sensor selection problem is defined as selecting k out of m measurements such that

the vector x ∈ Rn is best estimated. The ith measurement is given by yi = aTi x + ni,

where ai denotes the ith measurement vector and ni is a Gaussian noise with distribution

N (0, σ2). The performance appears to be near optimal in numerical experiments, but

there is no guarantee on the gap between the optimal solution and the approximate

solution. In [115], the problem of sensor selection, where a set of sensors is selected

according to the maximum a posteriori or the maximum likelihood rules, is formulated

as optimizations of submodular functions over uniform matroids. It is shown that a

greedy algorithm in this case performs within (1 − 1
e ) of the optimal solution. The

sensor selection problem in this work is identical to that of [58].

Submodularity is also used in [51] to approach the problem of scheduling sensors for

model-based reconstruction of a spatio-temporal continuous physical phenomenon in a

distributed manner. Sensor scheduling is the process of activating sensors at different

times so as to best estimate the state of a physical phenomenon and maximize the lifetime

of the sensor network. Individual sensors capture the state of the phenomenon at discrete
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points. In order to quantify the phenomenon in a continuous manner using the discrete

samples taken from the sensors, background information of the phenomenon in the from

of physical models can be used to fully reconstruct the state of the phenomenon. This

approach is called model-based reconstruction. Assuming that the phenomenon is given as

a linear stochastic system, a covariance reduction reward function, which is submodular,

is used to rate each sensor schedule. A hierarchically structured communication scheme

is used to enable distributed sensor scheduling with the assumption that each sensor

knows its own measurement parameters and can calculate its own potential covariance

reduction.

Simultaneous placement and scheduling of sensors is considered in [70], where an

algorithm is proposed to efficiently and simultaneously decide where to place sensors

and when to selectively activate them. It uses the submodularity of the utility function

in order to guarantee a constant factor approximation to the optimal solution. The

algorithm is also shown capable of trading off power consumption and accuracy.

2.3.3.2 Distributed Sensor Selection

A distributed active sensor selection (DASS) scheme is introduced in [116] for selecting

a set of sensors to activate in order to completely cover a sensing field while the lifetime

of the network is maximized. It uses the properties of Voronoi diagram to activate as

few sensors as possible. The main assumption of this work is that the field is fully

covered by sensors and the objective is to avoid selecting redundant sensors. DASS is

an initiator-driven sensor selection scheme which is distributed in the sense that there is

no central control over which sensors are selected. Each sensor only needs location and

remaining energy information of the sensors in its one-hop distance. If the Voronoi cell

of each sensor is covered by its sensing range, then the plane is guaranteed to be at least

1-cover and vice versa. A sensing field is said to be k-cover if any point in the field is

covered by at least k sensors [50].

A distributed sensor selection for dense sensor networks is proposed in [79], which

provides k-coverage of the sensing field. Each sensor is initially inactive in sensing

but periodically checks whether it is necessary to activate its sensing unit based on

its contribution or coverage merit so that the filed is k-covered. Each sensor waits for

a back-off period before deciding to activate its sensing unit. The back-off period is

shorter for sensors with larger contribution. Therefore, sensors turn on their sensing

unit in decreasing order of their contribution, which results in fewer number if active

sensors for providing k-coverage. The contribution of a sensor is calculated based on its

probability of detecting events and the number of additional sensors needed to fulfill the

required coverage.

When the utility function is not known a priori, it must be gradually learned from

the data. The utility function can even sometimes change over the course of time.

A distributed online sensor selection scheme is proposed in [46] to address this issue.

When the unknown utility function is submodular, strong theoretical bounds can be

proven for the algorithm proposed for this purpose. The algorithms are analyzed for two
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network communication models: broadcast model, where sensors can broadcast messages

to others, and star model, where sensors only communicate with the base station. At each

time step t a set of sensors St are selected that send their data to the base station. The

base station calculates the utility of the measurements ft(St). The goal is to maximize

the utility obtained by the base station over T rounds,
∑T

t=1 ft(St).

2.3.3.3 Sensor Selection in Participatory Sensing

One of the main works in utility-based sensor selection in participatory sensing is [69].

The physical phenomenon is modeled as a stochastic process using the background infor-

mation about the phenomenon. The utilitarian approach states that sensor readings that

are more demanded by applications should be preferred over readings from other sensors.

The importance of sensor readings is modeled by a demand model. A formal approach

is also pursued to take into account the uncertainty about the location and availability

of sensors. Lastly, the user preferences regarding privacy and resource consumption are

included into the overall problem formulation.

In [69], a spatiotemporal phenomenon is modeled by a stochastic process, with a

random variable Xs for each location s ∈ V (e.g., Xs can represent average car speed

over road segment s or the radiation at location s). After observing values at some

locations XA = XA, we can predict the phenomenon values at the unobserved locations

V\A by means of conditional expectations E[V\A|XA = XA]. Since the predictions are

not certain, the model is used to predict the variance at each location s ∈ V\A and the

reduction in the predicted variance is used to quantify the value of the sensor locations

after observing XA = XA. The reduction in variance is given by the following:

V ar(Xs)− V ar(Xs|XA = XA). (2.5)

Having taken a utilitarian approach, the aim is to achieve the highest reduction in

variances at locations s which are most demanded. To this end, a spatial process Ds,
called the demand process, is defined over all locations s ∈ V and then the expected

demand-weighted variance reduction is considered:

R(A) =
∑
s∈V

E[Ds(V ar(Xs)− V ar(Xs|XA = XA))]. (2.6)

It might not be possible to sample at locations A directly as there is uncertainty

in the current sensor locations. In addition, for privacy protection of users, we need to

incorporate some noise in selection. Thus, we assume that we can choose among a setW
of observations, e.g., cars, sensor owners, etc. Each observation w ∈ W corresponds to a

distribution over possible sensor locations, and any subset B ⊆ W leads to a distribution

P (A|B) over subsets A. The final informational objective to maximize is then the

following

F (B) = EA|B[R(A)] =
∑
A
P (A|B)R(A). (2.7)
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In order to couple the utility of information with the sensor owner constraints on

sharing preferences and resource usage, a cost function C is defined to associate each set

B of observations with a non-negative cost C(B). Based on the introduced model, given

the budget L that can be spent on observations, the goal is to select a set of observations

B∗ such that

B∗ = arg max
B

F (B) subject to C(B) ≤ L. (2.8)

This problem requires solving an NP-hard discrete optimization problem for which

finding the exact solution is typically intractable. However, when F (B) is submodular,

a greedy algorithm exists that performs within (1− 1
e ) of the optimal solution.

2.4 Query Processing and Optimization

Data collection for query processing in participatory sensing differs from query processing

in traditional database management systems (DBMS). Contrary to query processing in

databases where data is always available, in participatory sensing the data at required

locations might not always be available because of the uncontrolled mobility of the

participants. Moreover, the cost of obtaining data is different in participatory sensing

compared to traditional databases. The types of queries that are formulated by end-users

in participatory sensing is also different than the types of queries in DBMSs. Regarding

data collection and query processing, participatory sensing is closer to traditional wireless

sensor networks than to DBMSs.

2.4.1 Model-Based Data Acquisition

Statistical models of physical phenomena can be incorporated in data collection and

query processing in sensor networks to provide more robust interpretation of sensor

readings and help optimize sensor data acquisition [29]. Models can be used to identify

outliers or to estimate values of the phenomenon in locations where no sensor reading

is available. Models are also used to determine whether queries can be answered solely

by the model or new sensor readings are required to be collected. In BBQ [29], a model

is denoted as a probability density function (pdf), p(X1, X2, . . . , Xn), that assigns a

probability to any possible assignment of attributes X1, . . . , Xn. Each Xi represents an

attribute of a particular sensor. In particular, BBQ employes a time-varying multivariate

Gaussian as the model. This model is initially constructed from historical data.

BBQ supports probabilistic queries, which are normal SQL queries that include error

tolerances and confidence levels that specify the tolerable uncertainty in the answer.

Queries are translated into probabilistic computations over models. If a query cannot be

answered by the model in the specified confidence threshold, more data will be acquired

from the sensors to update the model and to provide the required confidence. Based

on the query, the model, and the network topology, BBQ generates an observation plan

and sends the plan to the network to acquire the necessary readings. The cost model

for generating the optimal observation plan takes into account the energy cost, which
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consists of communication and acquisition costs. In addition, model-based querying can

incorporate correlations between readings from different sensors as well as correlations

between different sensor attributes, e.g., temperature and voltage.

2.4.2 Multi-query Optimization in Sensor Networks

The problem of multi-query processing has been systematically defined in [112] in the

context of relational database systems. The basic idea of multi-query processing is

that since some queries might have some data in common, instead of processing each

query individually, we process the queries together. For example, consider the relation

Emp(name, salary, experience) and the following concurrent queries:

Q1 : SELECT ∗ FROM Emp WHERE s a l a r y > 20000
Q2 : SELECT ∗ FROM Emp WHERE s a l a r y > 30000 AND expe r i ence < 2

Then, it might be more efficient to process Q1 and Q2 together because the result of Q2

is a subset of the result of Q1.

The idea of multiple query optimization and processing has also been used in query

processing in wireless sensor networks. For example, a two-tier multiple query opti-

mization scheme is proposed in [136] with the purpose of sharing data acquisition, com-

putation, and communication cost of multiple concurrent queries in a resource limited

wireless sensor network. The first optimization phase is performed at the base station.

This optimization involves cost-based query rewriting, to convert user queries to syn-

thetic queries such that duplicate data requests are minimized and the query results are

correct. Radio transmission cost is considered as the performance metric. The generated

queries are then injected into the sensor network, where the second optimization phase

is performed. The main idea of the in-network optimization is to simultaneously acquire

data for all the synthetic queries during certain time interval. The number of messages

in the network is reduced by dynamically routing message dissemination such that data

aggregation is done as soon as possible with the involvement of fewer nodes. In addi-

tion, by taking advantage of the broadcast nature of radio transmission, acquired data

is transmitted to satisfy all the queries that need the data. Mapping and calculation is

used to obtain corresponding results for user queries after the sensor network returns

results for the synthetic queries.

In [93], Multiple user queries (UQs) are merged into one network query (NQ) and

then user data streams are extracted from network data streams, in order to efficiently

enable multiple applications on top of a single sensor network. The basic idea is that as

new user queries arrive, they can be merged into the current network query to create a

new network query with lower selectivity that can answer all the existing user queries.

The resulting network query then is sent to the sensor network, which produces data for

the query. User query answers are then extracted from the network query data stream

by carefully doing a down-sampling and attribute projection. As an illustrative example,

consider the following user queries:
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UQ1: SELECT nodeid , l i g h t FROM s e n s o r s SAMPLE PERIOD 5 s
UQ2: SELECT nodeid , l i g h t FROM s e n s o r s SAMPLE PERIOD 15 s
UQ3: SELECT l i g h t FROM s e n s o r s SAMPLE PERIOD 50 s
UQ4: SELECT nodeid , l i g h t , temp FROM s e n s o r s WHERE nodeid=1 AND temp

>25 SAMPLE PERIOD 20 s

These queries can be merged into the following network query:

NQ1: SELECT nodeid , l i g h t , temp FROM s e n s o r s SAMPLE PERIOD 5 s

The stream of data produced for NQ1 is then used to create data required for each

user query. For example, to answer user query UQ1, the query processor selects one data

record out of each three records and drops the temp attribute. Similarly, for answering

UQ4, the query processor selects one data record out of each four records and outputs

the record only when nodeid = 1 and temp > 25.

Differently to merging queries into a single query that is selective enough to be used

to answer all the user queries, [73] proposes to rewrite a new query based on the existing

queries and evaluate it in the base station instead of injecting it to the sensor network.

Testing query rewritability given the existing set of candidate queries is NP-complete.

Therefore, a heuristic approach is used for this purpose. As an example, consider the

following existing queries Q1 and Q2, and the new query Qnew.

Q1 : SELECT nodeid , temp FROM s e n s o r s WHERE temp > 15 SAMPLE PERIOD 4 s
Q2 : SELECT nodeid , l i g h t FROM s e n s o r s WHERE l i g h t > 200 SAMPLE PERIOD

2 s
Qnew : SELECT nodeid , temp , l i g h t FROM s e n s o r s WHERE temp > 25 AND

l i g h t > 250 SAMPLE PERIOD 8 s

Qnew can be rewritten to Q′new based on Q1 and Q2 as follows.

Q′
new : SELECT nodeid , temp , l i g h t FROM Q1 , Q2 WHERE Q1 . nodeid = Q2 .

nodeid AND temp > 25 AND l i g h t > 250 SAMPLE PERIOD 8 s

Optimizing multiple aggregate queries in sensor networks with the objective of min-

imizing the communication cost while taking into account the processing limitations of

the sensor nodes is studied in [130, 131]. Users pose their queries to the base station (or

gateway) node, which instead of immediately sending the queries to the sensor network

for in-network aggregation, it collects the queries in batches. The aggregate queries with

the same aggregation operator are grouped and optimized. The batches are dispatched

to the network once every epoch. Each epoch consist of two phases: query preparation

and result propagation. sum queries and its relatives (e.g., average, count) and min

queries are the two aggregate query classes that are considered. The aggregation is per-

formed over sensors that are located in the queried rectangle. The sensor network is

assumed to be given by a dissemination tree having the gateway node as its root.

Multi-query optimization in [130, 131] is based on the notion of equivalent classes

(ECs). An equivalent class is the union of all regions that are covered by the same

set of sensors. Thus, each query can be represented by a bit vector having 1’s for the
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ECs that contain the query, and 0’s for other ECs. Each node expresses the queries

in terms of ECs that intersect its subtree. For determining these ECs, the bounding

box of the subtree is calculated, which is the smallest rectangle that contains all nodes

in the subtree. Each node can calculate the bounding box of its subtree and the ECs

that intersect its bounding box. Therefore, the query dissemination and multi-query

optimization can be achieved in a distributed manner, hence, reducing communication

and computation and memory usage per node. For sum queries, an optimal algorithm

in terms of communication cost is proposed in this work. However, the problem of

minimizing communication cost for min queries are proved to be NP-hard.

A utility-driven architecture for supporting geographically distributed multi-user

radar sensor network is proposed in [74]. In such a system, diverse users, having dif-

ferent priorities, pose various queries that sometimes have contradicting requirements.

The goal of the proposed architecture is to maximize data sharing among users and

avoid duplicate data requests, compress and prioritize data transmission based on the

importance of the data to the end users, and to gracefully degrade user utility when

bandwidth is limited. The first step of the operation of the system is multi-query ag-

gregation in which multiple queries are aggregated into a single query. The aggregation

is performed at each epoch. Query aggregation minimizes the number of radar scans,

a time and energy-intensive operation, and allows one-time data transmission to the

base station. The base station sends the batched query at each epoch to the relevant

radars. Each query is specified by its query type, e.g., tornado detection or 3D wind

direction estimation, region of interest, priority, and deadline. Multiple user queries are

aggregated into a single aggregated query plan, a pixelated spatial map for the areas

covered by radars. A list of tripples < qti, wi, di > is assigned to each pixel, where

qti, wi, and di are, respectively, the type, weight, and deadline of the ith query. The

weight of a pixel for a query is the importance of transmitting data from that pixel to

the query. The weight is calculated as the multiplication of the priority of the query

and the inverse of its deadline value. The unified query plan is used by the radars for

progressive compression and scheduling. It is also used by the base station for global

data transmission control.

2.4.3 Multi-query Optimization in Stream Processing Systems

Multi-query optimization techniques are also considered in stream processing systems,

which sit one level above the sensor networks. For example, In the AdaptiveCQ frame-

work [129], for efficient processing of multiple continuous queries, the intermediate results

of queries are shared at a fine level without materializing them on disk. In AdaptiveCQ,

multiple join operators can be shared amongst several queries, thus improving query

performance.

AdaptiveCQ is based on an extension of the eddy query processing technique intro-

duced in [10], which is originally designed for one-time queries. An eddy is a query

processing operator that continuously reorders the operators in a query plan on a tuple-

by-tuple basis in order to adapt to fluctuations in input data streams. Data flows into
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the eddy from input streams. The eddy routes tuples to operators, which run as inde-

pendent threads. Operators return tuples to the eddy after performing their operations.

The eddy sends a tuple to the output only when it has been handled by all the operators.

The eddy adaptively chooses an order to route each tuple through the operators.

Based on the eddy query processing technique, [82] proposes an adaptive continuous

query processing architecture called CACQ. The CACQ uses the eddy operator to pro-

vide adaptivity to the changing query workload, data delivery rates, and overall system

performance. It explicitly attaches the work that has been performed on a tuple to the

tuple. This encoded work, which is refered to as the lineage of the tuple, allows operators

from several queries to be applied to a single tuple. Hence multiple overlapping queries

can share the work and state information. A predicate index is used for applying various

selections to each single tuple. Roughly speaking, a predicate index takes multiple pred-

icates and a tuple, and returns the set of predicates that accept the tuple in an efficient

way. Joins are split into unary operators called state modules that allow pipelined join

computation and sharing of state between joins in different queries.

SQPR [60] proposes a query planner for distributed stream processing systems, which

exploits overlaps between queries and sharing partial results with the objective of effi-

cient resource allocation. The optimal query plan is formulated as a single constrained

optimization problem that provides answer to queries while resource utilization is min-

imized and the allocation objective of the system, e.g., load balancing among hosts, is

respected. When new queries arrive, past query plans are revisited in order to keep the

efficiency of resource allocation. It also revisits running query plans when their resource

requirements changes. The solution to the optimal query plan problem, governs query

admission, operator placement, and query reuse.

The interested user can refer to further work in multi-query optimization in sensor

networks and stream processing systems such as [13, 64, 81, 113, 121, 135, 141, 144].

2.5 Truthful Elicitation of Sensor Measurements

In this section we review the state of the art in eliciting truthful data from participants

in participatory sensing. Most of these works employ game theoretic or mechanism

design approaches. The approach we take in Chapter 4 for truthfully eliciting data from

participants is also a mechanism design approach. Therefore, we start this section by

a brief introduction to the concept of mechanism design. We assume that the reader is

familiar with the basic concepts of game theory.

2.5.1 Mechanism Design

Mechanism Design (MD) is a sub-field of micro-economics and game theory that deals

with implementing desirable system-wide solutions to problems that involve self-interested

agents, who have private information about their preferences for different outcomes.

Each agent i has a type θi ∈ Θi, that specifies its preferences over different outcomes.

We denote by ui(o, θi) the utility of agent i with type θi for outcome o ∈ O, which states
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the “goodness” of the outcome for the agent. For example, in a multi-item auction,

agents are bidders and the type of each agent is its valuation of the items being auc-

tioned. The set of outcomes of the auction, O, is the set of all possible ways that items

can be assigned to bidders. The utility of agent i for outcome o, given its type θi is its

valuation for the outcome o, provided that participating in the auction does not incur

any cost to the agent.

The system-wide goal of a mechanism is defined by a social choice function, which

selects the optimal outcome given agent types.

Definition 2.4. (Social choice function) Social choice function f : Θ1 × · · · ×ΘI → O
chooses an outcome f(θ) ∈ O, given types θ = (θ1, . . . , θI), where I is the number of

agents.

The goal of mechanism design is to design a game and its rules in such a way that

despite agent’s self-interest, the social choice function picks the desired outcome for the

designer. A mechanism defines the strategies available (e.g., agents can bid only once)

and the method that chooses an outcome based on agent strategies (e.g., the item is

sold to the agent with highest bid for the price of the second highest bid). The central

authority that enforces the rules and coordinates the game is often called the center.

Definition 2.5. (Mechanism) A mechanism M = (Σ1, . . . ,ΣI , g(.)) defines the set of

strategies Σi available to each agent, and an outcome function g : Σ1 × · · · × ΣI → O,

such that g(s) is the outcome implemented by the mechanism for strategy profile s =

(s1, . . . , sI).

Agents are said to be rational if their goal is to maximize their utility. Therefore,

agent i is rational if it chooses its best strategy s∗i such that

s∗i = arg max
si∈Σi

E[ui(g(s1, . . . , sI)], (2.9)

where E[.] is the expectation operator.

We say that mechanismM with outcome g(.), implements social function f(θ) if the

outcome computed with agent strategies in equilibrium is a solution to the social choice

function for all possible agent preferences.

Definition 2.6. (Mechanism implementation) A mechanismM = (Σ1, . . . ,ΣI , g(.)) im-

plements social choice function f(θ) if g(s∗1(θ1), . . . , s∗I(θI)) = f(θ), for all (θ1, . . . , θI) ∈
Θ1 × · · · ×ΘI , where strategy profile (s∗1, . . . , s

∗
I) is an equilibrium solution to the game

induced by M.

In the following we provide some other important definitions.

Definition 2.7. (Efficient mechanism) A mechanism is efficient if it selects the outcome

that maximizes total utility (social welfare).

Definition 2.8. (Direct mechanism) A direct mechanism is a mechanism in which the

strategy space available to each agent is its type, i.e., Σi = Θi.
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Definition 2.9. (Incentive compatible mechanism) A direct mechanism is incentive com-

patible if it has an equilibrium s∗ where s∗i (θi) = θi for all i and θi ∈ Θi. That is, telling

the truth by all agents is an equilibrium.

Incentive compatibility is a desirable property of mechanisms as it shows that agents

have incentives to truthfully reveal their types. Another desirable property of mecha-

nisms is individual rationality as it incentivizes the agents to participate in the mech-

anisms. Individual rationality states that each agent receives (in expectation) more or

zero utility by participating in the mechanisms as compared to not participating.

2.5.2 Overview of Existing Work in Truthful Data Elicitation

One of the most well-known incentive compatible and individually rational mechanisms

that can work in many settings is Vickrey-Clarke-Groves (VCG) mechanism [84]. VCG

is an efficient mechanism, which selects an outcome that maximizes the total utility and

pays every agent its marginal contribution to the final outcome. Utility functions of

agents are quasi-linear. That is, the utility is the sum of the payoff of the agent from

the outcome of the mechanism and a monetary transfer from/to the agent. The payoff

of an agent from the outcome of the mechanism only depends on its own type. However,

when the agent’s payoff depends on other agents types, i.e., there exists interdependency

among valuations, it is proved that achieving both efficiency and incentive compatibility

is impossible [55, 85]. Mezzetti has shown that by using a two-stage mechanism, where

in the first stage the final outcome is found and in the second stage the payments are

calculated, we can overcome the impossibility of an efficient mechanism when valuations

are interdependent [88].

2.5.2.1 Mechanisms for Bandwidth Allocation

Authors in [66] propose a mechanism, based on [88], for efficient bandwidth allocation

in tactical data networks in which agents have interdependent valuations. The network

has a limited bandwidth and agents are tracking objects. The data from an agent

about objects can be valuable to other agents. However, agents are self-interested and

prefer receiving data than sharing data, so that other agents allocate bandwidth for

transferring data. The information about the quality of an agent’s data is not revealed

to the other agents. The value of an agent for receiving data about its objects of

interest not only depends on its private data but also on the data of other agents. This

implies interdependent valuation. The proposed mechanism incentivizes the agents to

truthfully reveal their private data about the tracked objects in a way that the bandwidth

is optimally allocated. In [26] a similar problem is considered. In this work, valuation

functions of agents are based on the Kalman Filter and the mechanism is similar to the

classical VCG mechanism. The valuation function of each agent is used to valuate the

information gain of data that the agent receives from other agents. The agents transfer

their valuation functions and their observations (about the objects being tracked) to
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the center. The center then calculates the optimal allocation (i.e., the allocation that

maximizes the social welfare) and the payments of each agent.

2.5.2.2 Mechanisms for Task Allocation

Porter et al. [102] consider a task allocation setting in which, in addition to task execu-

tion costs, the probability of success of each task is private information for the agents.

Several settings are considered, which include single task, multiple tasks with combina-

torial properties, and multiple tasks with dependencies. For some settings mechanisms

are proposed that satisfy the goals in terms of incentive compatibility, efficiency, indi-

vidual rationality, and budget balance. In other settings, where achieving desired goals

are proved impossible, mechanisms are provided for a weaker set of goals. In Chapter 4,

we propose mechanisms for eliciting truthful data from participants that are inline with

the work in [102].

In [102], the mechanisms rely on the reports from the agents about their probability

of success. However, even when agents are truthful, the actual success probability of an

agent might not be the reported one. Ramchurn et al. [105] extend the work in [102] by

introducing the notion of trust as the combination of other agents’ perceptions of the

probability of success of a particular agent. In this manner, interdependent valuation is

introduced since each agent uses other agents reports to build trust values. The trust-

based mechanism proposed, which is evidently a case of the general result of Mezzetti

[88], is efficient, incentive compatible and individually rational.

In a service-oriented computing environment, service consumers procure self-interested

distributed service providers to complete computational tasks that have deadlines. In

this kind of task allocation settings, the execution time of the tasks cannot be determined

with certainty. Moreover, service consumers might procure redundant providers to per-

form a task in order to increase the probability of success and mitigate the uncertainty

in service execution time. [102] and [105] do not consider redundant task allocation and

uncertain task execution times. Stein et al. [123] propose incentive compatible mecha-

nisms in different pricing schemes for truthfully eliciting private information from service

providers about their capabilities.

2.5.2.3 Mechanisms Based on Scoring Rules

Scoring rules [110] are used for evaluating and rewarding probabilistic predictions about

an event. Scoring rules incentivize the predictor to truthfully reveal its forecast and

maximize its reward. The score is computed based on the reported probability distri-

bution and the actual event that is finally observed. A scoring rule is said to be proper

if by reporting its true probability, the forecaster maximizes its expected score, and by

reporting any other probability it receives a strictly lower score.

Payment schemes based on proper scoring rules are proposed in [145] for truthfully

eliciting information represented by discrete random variables. The proposed payment

scheme results in truth-telling when all the agents and the center have the same belief
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(i.e., underlying probability distribution) about the state of the world. In the case of

probability distributions that vary very slightly among agents, an approach is proposed

for designing mechanisms that are truthful and robust to a certain degree of variations

in beliefs. Finally, when agents have access to extra unsold information that impacts

the information requested by the center, it is shown that designing optimal mechanisms

is computationally hard.

Peer-prediction method, proposed in [89], is a mechanism based on proper scoring

rules for eliciting honest feedback, such as ratings of items, from the agents when inde-

pendent and objective outcomes are not available. This method uses the report of one

agent to update a probability distribution for the report of the reference agent. The

score assigned to an agent is calculated not by comparing its rating to the ratings of

other agents, but by comparing the likelihood of a reference agent’s ratings and the

actual rating of the reference agent. By appropriately scaling scoring rules, not only

honest reporting is guaranteed, but also the agents are incentivized to exert costly effort

for acquiring information and reporting the ratings. The scaling is performed in a way

that reporting honestly is better for the agents by at least a margin ∆.

The method proposed in [89] can lead to arbitrary high payments, which are provided

by the mechanism. Jurca and Falting in [59] propose a method for computing minimal

budget required for payments in incentive compatible mechanisms for achieving a certain

margin ∆. The optimal payments are represented by linear optimization problems.

Experiments show that these linear programs can be computed using linear program

solvers. It is shown that using several reference raters for scoring one feedback, can

further reduce the budget required for the mechanism. Another approach for reducing

the optimal expected budget is to use probabilistic filtering to filter out false reports.

This is based on the fact that lying agents, for achieving considerable benefit, must

provide reports that are significantly different from the average reports given by honest

agents. [134] extends the work of [89] and [59] for a dynamic setting in which the quality

of the products changes over time. A Markov process can model the quality changes

over time.

The authors in [99] propose two-stage mechanisms based on strictly proper scoring

rules for truthful elicitation of probabilistic estimates. In the base case, the center first

announces a desired estimation precision. Then it selects an agent with the minimum

reported cost for the required precision. In the second stage, the center announces its

scoring rule. The selected agent generates and reports its prediction and the precision of

the prediction. After observing the actual outcome, the center issues a payment to the

agent based on the scoring rule. This mechanism is proved to be incentive compatible

and individually rational. Two extensions of the base mechanism are considered. In

the first case, the required precision cannot be satisfied by only one agent. In this case

the base mechanism is extended to select multiple agents and combine their predictions

to achieve the desired precision. In the second case, the assumption of access to the

actual outcome is removed. In this case, the base mechanism is extended in a way that

the reported estimates of the selected agents are combined to serve as ground truth.
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These mechanisms are shown to have lower variance in payment compared to the peer

prediction approach [89].

2.5.2.4 Mechanisms in Mobile Sensing

An incentive compatible mechanism for eliciting truthful measurements in community

sensing, called Peer Truth Serum, is proposed in [38]. Given the reported measurement,

a payment is calculated based on a reference estimate using a publicly available prior

probability distribution for the variable being measured. The reference value is taken

from the model, which is updated using other reports received in the same time interval.

When the agents adopt a publicly known distribution as their prior distribution, the Peer

Truth Serum incentivizes truthful reporting. In the case that agents are more informed

about the event, their prior distributions might differ from the public distribution in

the sense that their distribution is closer to the true distribution of the event. In this

case truth-telling is not guaranteed, but it is shown that Peer Truth Serum incentivizes

helpful reports in a way that the reports help the public distribution to converge faster

to the true distribution.

Truthfully eliciting data in participatory sensing when participants are privacy con-

scious is considered in [122]. The privacy tradeoffs in participatory sensing is modeled as

an adaptive submodular optimization problem. For this problem modeling, the utility

functions are required to be submodular. The aim is to design mechanisms for selecting

participants to provide data for the application in order to achieve a near-optimal util-

ity for the applications while the budget limit is respected. For protecting privacy, the

self-interested agents obfuscate the data that they report (e.g., their locations). Sensing

profile of an agent is the set of locations that are covered by that agent. As obfuscation,

agents share with the system a set of sensing profiles instead of their current sensing

profile. Only after being selected by the center, the agents reveal their actual sensing

profile. Each agent declares a cost for reporting its private data. After receiving cost

information from the agents, the center iteratively selects an agent, computes a pay-

ment to be issued to that agent, and receives the private information of the agent. This

mechanism, called SeqTGreedy, is shown to be truthful regarding reporting costs.

Last but not least, a mobile commerce scenario is considered in [22], where users

get benefits from service providers (companies) by reporting their location with a cer-

tain level of granularity. The privacy mechanisms proposed in this work help companies

motivate users by means of monetary incentives to obtain more accurate location infor-

mation. An information theoretic approach is used to quantify the anonymity level of

each mobile user. The privacy game is designed in a way that the equilibrium point can

be moved towards a desirable location granularity. The unknown parameters of users,

such as their risk factors, are learned by the companies using an iterative distributed

algorithm and regression learning.
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2.6 Quality Assessment for Sensor Date Streams

One of the essential tasks in sensor networks is to assess the quality of the sensor data

in order to guarantee reliable and meaningful data for the applications of the sensor

network. The reason is that sensor readings might be affected by faults. Faults encom-

pass errors due to temporary malfunctioning of sensors, loss of connectivity, resource

limitation, interference, etc. Quality assessment methods normally assign a quality score

to each sensor reading, which indicates how close the reading is to the true value. When

the quality score of a sensor reading is lower than a threshold, the reading is considered

as an outlier. There exist several work in the literature that try to detect outliers in

sensor data streams. These approaches might also, directly or indirectly, be used as

quality assessment methods. It is worthwhile to note that the terms quality, trust, and

trustworthiness have been used interchangeably in the literature. In this thesis we use

the term quality to determine how close a sensor measurement is to the true value of the

phenomenon at the location that the measurement has been taken.

2.6.1 Review of Sensor Data Quality Assessment Methods

In this section we review state of the art mechanisms in data quality assessment in sensor

networks. We present the approaches based on value similarity in a fixed neighborhood

and the techniques based on Bayesian and probability theory. We also present relevant

related research work in computing sensor error bounds. Finally, we briefly review the

existing outlier detection techniques.

2.6.1.1 Value Similarity in Fixed Neighborhood

There exist several techniques for quality assessment of sensor data that use multiple

measurements of the same phenomenon collected from different sensors that are located

in a fixed neighborhood. A cyclic trustworthiness assessment framework is proposed in

[76]. In this framework, the trust scores of sensor data streams affect the trust scores of

the network nodes. Inversely, the trust scores of network nodes affect the trust scores

of sensor data streams. Therefore, there is an inter-dependency between trust scores

of nodes and streams. The trust scores of data items are computed based on the value

similarity and provenance similarity between them. Value similarity states that the

more similar the values of data items are, the more trustworthy they are. Provenance

similarity indicates that the data items with similar values are more trustworthy if their

provenance is more different. Provenance of a data item is the path it traverses from

its source node to the aggregator node. Value similarity can be calculated using any

reasonable similarity model. The similarity model introduced in [76] is presented in the

following.

In the cyclic trust computation framework three types of trust scores are maintained

for nodes and data items: current, intermediate, and next trust scores. In each cycle

of the framework the following steps are performed: (1) The current trust scores of

data items are calculated based on the current trust scores of the nodes according to
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Figure 2.2: Trust (or quality) score computation based on value similarity. The distance
between the sensor reading x̂i and the mean of the distribution µ, determines the trust
score.

the provenance of the data items. (2) The intermediate trust scores of data items

are computed first based on value similarity among data items. This score is then

adjusted based on their provenance similarity. (3) The next trust score of each data

item is calculated by linearly combining its current and intermediate scores. (4) The

intermediate trust scores of nodes are computed as the average of the next trust scores

of the data items that are generated by or passed trough them. (5) The next trust score

of each node is calculated as a linear combination of its current and intermediate scores.

The data items in the same event are assumed in [76] to follow a normal distribution

since it represents well natural phenomena. Intuitively, the values that are closer to the

mean of the distribution can be regarded as more trustworthy as compared to the values

that are far from the mean. Based on this observation, the intermediate trust score of

a data item based on its similarity with other data items can be computed using the

cumulative probability of the normal distribution as shown in Figure 2.2. In this figure,

x̂i is the value of the data item (i.e., a reading from sensor si), µ and σ2 are the mean

and variance of the normal distribution of the values in the same event, respectively.

The intermediate trust score of x̂i, when x̂i > µ, can be computed as the following.

score(x̂i) = 2

∫ ∞
x̂i

1

σ
√

2π
e−

(v−µ)2

2σ2 dv. (2.10)

A basic approach for determining faulty sensors is to take advantage of the spatial

correlation among sensor readings by comparing the values with neighboring sensors.

Based on majority voting scheme, the sensor reading is sent to each sensor node in the

neighborhood. The sensor node compares its own value with the received value. If

the difference is more than a pre-defined threshold, the sensor node gives a negative

vote. If the number of negative votes is greater than the positive votes, the reading

is considered as faulty. However, if the number of faulty sensors in the neighborhood

is high, the simple majority voting scheme fails. Based on the assumption that closer

sensors are more correlated, the weighted voting scheme assigns more weight to the votes

of closer sensors. However, this assumption does not always hold. Moreover, when the

closer sensors are faulty the scheme fails. In [137] a distributed approach for detection
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of faulty values in the presence of events is presented to overcome the shortcomings of

these two voting schemes. The approach proceeds as follows: (I) it builds a correlation

network between sensors that is based on value similarity (II) it views the correlation

network as a Markov chain and it computes a rank for every sensor in terms of transition

probabilities from neighbors to a sensor (III) it uses a voting mechanism to detect faulty

values that consists of two phases: (i) self-diagnosis phase, where every sensor verifies

whether its current value is unusual (ii) neighbor-diagnosis phase is executed if the self

diagnosis indicated unusual value, where the sensor node consults its neighbors to further

validate if the value is faulty.

The correlation between the readings of two sensors si and sj is calculated based on

the Extended Jaccard similarity measure [124] as follows.

corri,j =
bi(t) · bj(t)

||bi(t)||22 + ||bj(t)||22 − bi(t) · bj(t)
, (2.11)

where bi(t) and bj(t) are the reading vectors of si and sj at time t in a sliding window

of size ∆t. In the Markov chain, the transition probability from sensor si to sensor sj is

given by the following:

pi,j =
corri,j∑

k∈Ni corri,k
, (2.12)

where Ni represents the neighborhood of sensor si. The votes of the sensors are weighted

by their SensorRank which is given by the following formula:

ranki =
∑
j∈Ni

rankj · pj,i. (2.13)

In [30] an algorithm for faulty sensor identification is presented, where the algorithm

uses a fixed neighborhood Ni, of radius r centered at each sensor si. It decides if a sensor

reading x̂i is faulty as follows: (I) it computes the difference between the sensor reading

and the median of sensor readings in the neighborhood di = x̂i−med(i); (II) it computes

dj for each sensor sj in Ni; (III) it computes the average and variance of the differences;

(IV) it computes the Z-score for di, where si is considered faulty if the Z-score exceed

a user defined threshold. This work is based on the assumption that faulty sensors are

spatially independent, while events are spatially correlated.

2.6.1.2 Bayesian and Probabilistic Approaches

As a different approach towards distinguishing events and errors in sensor networks, [71]

presents a distributed Bayesian algorithm for fault-tolerant event detection. It estimates

the probability of a binary variable that a sensor reading is part of an event region given

values of such a binary variable from each neighbor in a fixed neighborhood of radius

r. The model gives the same weight to the evidence from each neighbor in the fixed

neighborhood. It assumes that sensors are densely deployed such that nearby sensors

are likely to have similar values in response to the same event unless they are at the

boundary of the event. It assumes that sensor faults are likely to be stochastically

uncorrelated, while event measurements are likely to be spatially correlated.
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In [36] a framework for cleaning and querying noisy sensor readings is proposed. It

consists of a cleaning module and a query processing module. In an online fashion,

the cleaning module computes the uncertainty models of the unknown true values by

following a Bayesian approach. Using the uncertainty models produced by the cleaning

module, the query processing module provides answers to queries posed on the noisy

data. The cleaning module has three inputs: noisy sensor readings, sensor error models,

and prior distribution of sensor values. The noise is assumed to be normally distributed

with zero mean and a known standard deviation of σ. The true value x hence, follows

a normal distribution with mean µ = x and variance σ2. Using Bayes’ theorem the

posterior probability of the true value is computed as:

p(x|x̂) =
p(x̂|x)p(x)

p(x̂)
, (2.14)

where x̂ is the sensor value. When the readings of a sensor s follow the Gaussian distri-

bution N (µs, σ
2
s), the posterior probability p(x|x̂) also follows a Gaussian distribution

N (µx, σ
2
x), where µx and σ2

x can be computed using the Bayes’ theorem and the prop-

erties of the Gaussian distribution.

In [96] a Bayesian faulty sensor detection approach based on a sort of majority voting

is proposed. The essential assumption is that the non-faulty sensors generate very similar

values. Moreover, it is assumed that data from non-faulty sensors is locally modeled by

a linear model. First, it selects a subset of sensors that can best represent the data by

casting the problem as a maximum a posteriori probability (MAP) problem. In this

way, with a Bayesian detection approach a subset of sensors is selected that maximizes

the posterior probability of the subset, i.e. the conditional probability that the subset

is non-faulty given the data. Then, the selected subset is used to determine if a given

sensor is faulty or not.

A fixed structure Bayesian Network model is applied in [133] for anomaly (event)

detection in gas monitoring sensor networks for underground coal mines in order to

capture spatio-temporal correlations. The structure of the network is constructed by

embedding the time series in a d-dimensional phase space and creating a dependency

between each node and the nodes that precedes it in time. The same network structure is

used as “subnets” of the Bayesian Network model for the combination of multiple sensors.

Each node is modeled as a one dimensional Gaussian. Using the maximum likelihood

(ML) algorithm the single unknown parameter (i.e., the conditional probabilities that

quantify each node) is learned from the training data. Then, the learned network is

used to detect anomalies by measuring how well observations fit the Bayesian Network

model, by computing their likelihood values. An observation is identified as anomaly if

its likelihood value is low.

In [126] a method, called True-Alarm is presented for finding trustworthy alarms and

meaningful objects in sensor networks. The authors argue that the methods based on the

neighbor similarity hypothesis, such as [137] and [71], can cause false alarms if the sensors

in the neighborhood, even when reliable, cannot detect the object’s activity because of
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the distance. The trustworthiness of a value (alarm) is defined as the probability that

the value is correct. The trustworthiness of an object is defined as the probability that

the object really exists. The trustworthiness is defined in terms of a conditional alarm

trustworthiness given a specific object causing the alarm. The trustworthiness of a value

is given by the maximum conditional alarm trustworthiness given the set of sensors

detecting the alarm (the monitoring sensor set of the object). The trustworthiness of an

object is given by the average of all conditional alarm trustworthiness values over the

monitoring sensor set of the object.

2.6.1.3 Sensor Accuracy Bound Computation

The phenomenon model is used in [49] to calculate maximum feasible phenomenon

change over a given temporal and spatial distance. Sensor drift from a time to an-

other and sensor noise (both can be obtained from sensor specification) represent the

bounds on sensor inaccuracy. Computing sensing accuracy is an iterative process in

which the accuracy bound is updated based on the previous accuracy and the drift from

last time and next time. Then the signal range is computed which represents the fea-

sible phenomenon range at each time given the calibrated sensor reading and sensor

accuracy at that time. This is also an iterative process in which the bounds based on

the phenomenon model and signal range of other readings are used. Measurements that

fall outside of the predicted bounds, computed based on the phenomenon and sensor

models, are considered as erroneous.

2.6.1.4 Outlier Detection Techniques

A comprehensive review of methods for outlier detection in wireless sensor networks is

presented in [143], where many of them are relevant to the task of assessing quality

of sensor values. The state of the art techniques are classified in the following main

categories:

• Statistical-based approaches: use a statistical model and calculate how well a sensor

reading fits the model. In these approaches, which are also called model-based

approaches, it is assumed that the distribution of the data is represented by a

statistical model. The model can sometimes be learned from the data itself. Given

the model, if the probability of a sensor reading being generated by that model is

lower than a threshold, the sensor reading is considered as outlier.

For example, in the approach proposed in [15] each sensor node learns the statistical

distribution of the difference between its measurements and the measurements of

its neighbors. The distribution of the difference between the measurements of

each node at different times is also learned. Given these distributions, every new

measurement can be tested for errors. The probability of observing a difference d

which is more extreme than di is given by its p-value. Given the p-values of sensor

nodes for their temporal differences and the differences with their neighbors, and

a significant level, each measurement can be classified as standard measurement,
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point failure, or common event. The essential assumption of this approach is that

the sensor readings in a neighborhood are strongly correlated. Moreover readings

of each sensor over time must be correlated.

• Nearest neighbor-based approaches: use a distance measure to determine how close

a sensor reading is to the readings of its nearest neighbors. If the distance is more

than a pre-specified threshold, the reading is considered as outlier. For example,

the approach proposed in [30] falls into this category.

• Clustering-based approaches: group sensor readings into clusters based on certain

similarity metric. A sensor reading which does not belong to any cluster is con-

sidered as outlier. Sensor readings that form a very small cluster compared to the

size of the other clusters are also considered as outliers. The distributed anomaly

detection approach based on clustering proposed in [104] belongs to this category.

The average inter-cluster distance of K nearest neighbors clusters are used to de-

termine which clusters are anomalous.

• Classification-based approaches: use a classifier that is trained on a set of training

data to classify new senor readings as outlier or normal. Bayesian detection and

Bayesian Network-based approaches, such as [36, 71, 96, 133], fall into this category.



www.manaraa.com

Chapter 3
Utility-driven Data Acquisition in
Participatory Sensing

3.1 Introduction

Participatory sensing is becoming a popular paradigm for collecting and sharing data

about phenomena of social interest, such as air quality, well-being, traffic, etc. Even

though some people might altruistically participate in such data collection systems, we

believe that adequate incentives must be provided to people to encourage more par-

ticipation. The burden that participation imposes on the participants, e.g., battery

and network consumption and privacy leakage, should be compensated to guarantee

long-term sustainability of the system. Moreover, in a popular participatory sensing

environment, there can be many users/applications that are interested in the data being

collected and pose different types of queries, instant or continuous ones. At the same

time, some of the users may participate in the sensor data collection. Such participatory

sensing system can be envisioned by introducing some sort of incentives, e.g., payments

from the querying user, to the users from whom the data for the query is collected. It

is critical for the sustainability of the system to provide to the users as much utility as

possible. In this context, utility is defined as the difference between the value of the

query results to the users and the price they pay for obtaining the results.

There exists a great number of works in the area of sensor data acquisition, which

either have a single application-specific objective, e.g., achieving complete coverage of

the sensing field [116], or assume certain structures for the utility functions, e.g., sub-

modularity as in [16, 69, 70, 115]. Similarly, there is a large body of work in the context

of multi-query optimization in sensor networks and in stream processing systems, e.g.,

[73, 129, 130]. However, the existing approaches cannot be directly applied to the con-

text of participatory sensing for the following reasons: 1) because of the uncontrolled

35



www.manaraa.com

mobility of the participants, the query processor needs to deal with data unavailability;

and 2) there is a lack of sophisticated utility considerations in the existing work.

In summary, our main contributions in this chapter are the following:

1. We propose a data acquisition framework in the context of participatory sensing

that takes into account the factors pertinent to this context and efficiently shares

sensor data among queries of different types, so as to enable sustainability. Queries

for sensor data come from multiple different applications or users that can have

any arbitrary utility considerations.

2. We formulate the optimal data acquisition problem as a multi-query optimization

with the objective of maximizing the total utility for the queries and propose

efficient heuristic solutions for various query types and query mixes.

3. Important query categories, including one-shot and continuous queries, in the con-

text of participatory sensing are considered and efficient data acquisition algo-

rithms are proposed for each query type as well as the combination of different

query types.

4. We verify the effectiveness of our approach through extensive simulations on real

and synthetic data traces.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce

our context and formally define the problem. We present heuristic algorithms for sensor

scheduling in Section 3.3 and evaluate those algorithms experimentally in Section 3.4. We

review the related work in Section 3.5 and finally we conclude this chapter in Section 3.6.

3.2 The Context

In a participatory sensing system several participants carrying heterogeneous sensing

devices move in a certain region. The sensing devices communicate with a server, which

is called the aggregator. Sensing devices take a measurement only when they are selected

by the aggregator to do so. Participants ask for a payment for each measurement they

provide. Each sensor has a specific sensing range. Each measurement includes a sensor-

specific inherent inaccuracy. In this chapter, we use the term sensor to refer to the

actual sensor on the sensing device, the sensing device, or even the combination of the

participant and the sensing device she carries.

End users (or applications) submit queries to the aggregator. The aggregator peri-

odically collects the queries and tries to optimally answer them. Our optimization ob-

jective is to maximize the overall utility (or social welfare), since this objective matches

our requirement for sustainable operation of the system, as opposed to data value maxi-

mization or cost minimization. Alternatively, an egalitarian approach could be followed,

where the number of users with positive utility is maximized. Utility maximization can

be achieved by selecting appropriate sensors for providing measurements, considering



www.manaraa.com

Query

One-shot Continuous

Single-sensor Multi-sensor

Point Query

Spatial Aggregate Query
Query over Trajectory

Location Monitoring Query

Region Monitoring Query

Point Query

MonitoringEvent Detection

...

Figure 3.1: Query categories in the participatory sensing context. The query types in
boldface are explicitly handled in this chapter.

the value of the measurements to the queries, the cost of obtaining such measurements,

and exploiting possible common data requirements among queries. In a participatory

sensing context with diverse set of end users who have different criteria for evaluating

the quality of query results, the aggregator relies on the end users to provide a valuation

function, vq(.), with each query q. This function returns the value, in real or virtual

currency, of a set of measurements that can provide the answer to the query based on

the quality of the measurements. Users have a limited budget to spend for obtaining

query answers.

Queries issued by end users can fall into two major categories, namely one-shot

queries and continuous queries. One-shot queries are executed only once, while contin-

uous queries are continuously evaluated. Major one-shot queries in the participatory

sensing context are point queries, spatial aggregate queries over a region, and queries

over trajectories. Continuous queries can be split into two sub-categories of monitoring

queries and event detection queries. Single-sensor queries only need one sensor read-

ing while multi-sensor queries need multiple sensor readings. Figure 3.1 shows these

categories and the query types that we handle explicitly in this chapter. Each query

category is explained in more details later in this section. Table 3.1 summarizes our

most frequently used notation in this chapter.

3.2.1 Problem Formulation

We assume, without loss of generality, that the system runs for a period of T , e.g.,

from 6 a.m. to 9 p.m. in a day. This period is discretized into several time slots of

fixed length, e.g., 5 minutes. All the sensors communicate with a unique aggregator

and if necessary, at the beginning of each time slot announce their location and price of

providing a measurement at that location.

The objective is to acquire data for the queries from the available sensors in order to

maximize the utility over T . Formally, we let Q denote the set of all queries issued from

time 1 to T , St denote the set of available sensors at time slot t, and K : Q → ×Tt=12S
t

define an allocation scheme that assigns sensors to each query. Y (K, t) is a function

that returns the set of sensors that are assigned to all queries at time t. We denote by
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Figure 3.2: Random arrival and departure / unpredictable mobility patterns: user u1

enters at time t1 and can take three possible trajectories and exit at times t5, t7, or t10.

cs(K, t), the cost of sensor s at time t given the allocation K. Let K denote the set of

all possible allocation schemes. The goal is to find allocation K∗ ∈ K that maximizes

the social welfare:

K∗ = arg max
K∈K

(∑
q∈Q

vq(K(q))−
T∑
t=1

∑
s∈Y (K,t)

cs(K, t)
)
. (3.1)

For solving the above problem we need to know in advance all the queries that will

be issued over T , and the location and cost of all the sensors at each time slot. However,

in a participatory sensing system, users must be able to submit new queries whenever

they desire. Therefore, it is not realistic to ask the users to pose all their queries in the

beginning of T . Due to the uncontrolled mobility of the sensors, their exact locations at

a specific time slot cannot be determined a priori. Moreover, the cost of a sensor might

vary from one time slot to another based on the preferences of the sensor owner. Due

to the lack of access to all the required information to solve the long-term optimization

problem (3.1), we resort to a myopic approach, in which we try to maximize the utility at

the current time slot without considering the future state of the system. This approach

would be further motivated in a “hotspot” monitoring setting (cf. Figure 3.2) described

as follows: Consider a hotspot area, e.g., the downtown, of a city where users carrying

smart phones continuously enter and exit, and roam around while they are inside it.

In this case, the mix of available sensors in the hotspot area dynamically changes and

short-term optimization towards monitoring sustainability becomes more important.

Let Q denote the set of all queries available at the current time slot t. Q can include

one-shot queries issued for time t and continuous queries that started before or at t. Let

S be the set of available sensors at t and cs denote the reported cost of each sensor s.

Let M : Q → 2S define an allocation scheme that assigns sensors to each query. Y (M)

is a function that returns the set of sensors assigned to queries. LetM denote the set of
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all possible allocation schemes. The goal is to find allocation M∗ ∈ M that maximizes

the total utility in the current time slot:

M∗ = arg max
M∈M

(∑
q∈Q

vq(M(q))−
∑

s∈Y (M)

cs
)
. (3.2)

After finding the best allocation scheme, the cost of each selected sensor s is shared

among queries that are answered using the measurement from s. We denote by πs,q

the amount that query q pays for using data from sensor s. We must ensure that for

each selected sensor s, the total payment from the queries using that sensor is equal to

cs. Moreover, for each query q, which is answered using sensors Sq, its utility must be

positive, i.e., vq(Sq)−
∑

s∈Sq πq,s > 0.

3.2.2 One-shot Queries

We can distinguish between the queries that only need data from one sensor and queries

that ask for several sensor readings. More specifically, spatial aggregate queries and

queries over trajectories always require several sensor readings, whereas there exist some

point queries that ask for only one sensor reading and some point queries that ask for

more than one sensor reading. The former type of point queries is referred to as single-

sensor point queries and the latter is referred to as multiple-sensor point queries. The

reason for this distinction is that single-sensor queries can be treated more efficiently

due to their special characteristics.

3.2.2.1 Point Queries

A user who is interested in knowing the value of a phenomenon at a certain location,

submits a point query at that location to the system. The queries are required to come

with a quality valuation function to valuate the quality of the sensor readings. Generally,

the value of a sensor reading for an application is a function of the quality of that sensor

reading and the quality of the sensor readings obtained so far. The number of samples

required for finding the value of a phenomenon depends on the phenomenon itself and

the trustworthiness of the sensors. For example, it might be necessary to take redundant

measurements to assess the trustworthiness of a particular sensor that can be used for

providing the measurements. For instance, a single-sensor point query q might have the

following valuation function:

vq(s) =

{
Bqθq,s θqmin ≤ θq,s ≤ 1,

0 θq,s < θqmin,
(3.3)

where 0 ≤ θq,s ≤ 1 is the quality of the sensor reading for q, θqmin is the minimum

acceptable quality by the query, and Bq is the query budget. This implies that the user

is willing to pay Bq for a sensor reading with the highest possible quality.

The quality of a sensor reading depends on the distance of the sensor from the queried

location (more accurately, it depends on the correlation between the phenomenon value
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at the queried location and the location of the sensor,) the inherent sensing inaccuracy,

and the trustworthiness of the sensor. We assume that this dependency is given by

a user-defined function θq(s, lq), where lq is the queried location. The following is an

example of such a function:

θq(s, lq) =

{
(1− γs)(1− |ls−lq |dmax

)τs if |ls − lq| ≤ dmax
0 otherwise,

(3.4)

where γs is the inaccuracy of s measured in percentage of the value range of the sensor,

0 ≤ τs ≤ 1 is the trustworthiness of s, ls is the current location of s, and dmax is the

maximum distance in which the sensors can be considered to provide data. Hereafter,

we assume the same function for all queries and we only use θs when lq is implied by the

context.

In the case of multiple-sensor point queries, the querying application is requested to

provide a more general valuation function vq(S), that takes as input a set of sensors and

determines their value to the query.

3.2.2.2 Spatial Aggregate Queries

When issuing spatial aggregate queries, applications are interested in an aggregate value

of the measurements (e.g., average, min, and max) over a region. Users assign a budget

Bq to each query q and spend it based on their valuation of the quality of the result.

The quality of an aggregate query answer depends on the qualities of the sensor readings

used for providing the answer as well as the coverage of these readings. The application

provides, along with the query q, a function vq(Sq) that evaluates the quality of the

result. Sq denotes the set of selected sensors for answering query q. The following is an

example of such a function:

vq(Sq) = BqGq(Sq)
∑

s∈Sq θs

|Sq|
, (3.5)

where Gq is a function that calculates the coverage of the selected sensors. A simple

coverage function can calculate the fraction of the area covered by the sensors, while a

more general function might also take into account the dispersion or the importance of

the locations that are covered by the selected sensors.

3.2.2.3 Queries over Trajectories

When a user issues a query over a trajectory, she would like to know the (aggregate)

value of a phenomenon over that trajectory. For instance, a user might be interested in

knowing the current maximum value of CO2 on the way from her house to her work.

This type of query can be treated as a special case of spatial aggregate query in which

instead of providing a region of interest, a trajectory is specified.
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3.2.3 Continuous Queries

Continuous queries are queries that are continuously executed for a certain time pe-

riod or until they are removed by the users. In general, two categories of continuous

queries can be distinguished: 1) monitoring queries that ask for continuously monitoring

a phenomenon at a certain location or area, and 2) event detection queries that ask for

monitoring a location or region for detecting the occurrence of an event. In the following

example queries, Q1 and Q2 are monitoring queries and Q3 and Q4 are event detection

queries.

Q1: Monitor CO2 level at location l in the period [t1, t2].

Q2: Monitor CO2 level in region r in the period [t1, t2].

Q3: Notify me when CO2 > x with confidence > α at location l in the period [t1, t2].

Q4: Notify me when avg(CO2) > x with confidence > α in region R in the period

[t1, t2].

For queries similar to Q1, which are referred to as location monitoring queries, ap-

plications are requested to provide the desired sampling times T , as well as a valuation

function vq(T ′), which returns the value of sampled times T ′. Since the locations of sen-

sors, rather unpredictably, change over time, satisfying all the desired sampling times

cannot be guaranteed. On the other hand, it is likely that a sensor moves close to a

queried location at time t′ /∈ T . Taking a measurement at these time instances, especially

when the sensor can be shared with other queries, can increase the utility of the query at

hand. In Section 3.3.3 we propose an approach to answering location monitoring queries

with the objective of increasing the utility of the queries.

In the case of queries similar to Q2, which we refer to them as region monitoring

queries, we rely on the querying applications to provide their desired sampling points

(i.e., sampling locations and times), as well as a valuation function vq(.), which calculates

the value of the measurements (taken at any sampling points). As for location monitoring

queries, it might not be possible to satisfy all the desired sampling points. Also, there

are opportunities to use other sampling points considering the sharing possibilities with

other queries. In Section 3.3.3 we introduce an approach for answering region monitoring

queries considering the opportunistic nature of participatory sensing.

In this work, we do not specifically deal with event detection queries. However,

we believe that data acquisition for this type of continuous queries is very similar to

data acquisition for monitoring queries. The main difference is that redundant sampling

might be needed to ensure the confidence requested by the queries.

3.2.3.1 Example Valuation Function for Region Monitoring Queries

One common approach for finding the valuation of a set of sensors for an application

is to use the notion of expected reduction in variance [29, 69]. In this approach the

phenomenon is modeled as a Gaussian process. Let V be the set of locations at which a

measurement can be taken, i.e., there exists at least one sensor at each of these locations.

The state of the phenomenon can be modeled using a set of random variables XV .
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Assume, for the moment, that the goal is to select a subset A ⊆ V of the locations

to maximize the sensing quality F (A) while the budget constraint is satisfied. The

value of the phenomenon at the unobserved locations are then predicted based on the

process model given the observed locations. The expected reduction in variance at the

unobserved locations can be used to measure the quality of sensing if the set A of

locations are selected to take measurements from. This quantity is given by:

F (A) = V ar(XV)−
∫
P (xA)V ar(XV |XA = xA)dxA, (3.6)

where xA is the measurements observed at locations A. Consequently, the following

valuation function can be used for region monitoring queries:

vq(S) = Bq · F (S) ·
∑

s∈S θs

|S|
, (3.7)

where S is the set of sensors (and their locations). Notice that in the above modeling,

the assumption is that the phenomenon is a spatial process. In order to expand the

approach for spatio-temporal phenomena, one needs to add a time dimension to the

random variables.

3.2.4 Costs

Sensor owners participate in the system as long as the resource consumption on their

devices as well as their location privacy loss are compensated. In this regard, each

sensor asks for a certain price in return for providing a measurement to the aggregator.

Therefore, the cost of obtaining a measurement from sensor s which is located at ls,

consists of two components as demonstrated in the following equation:

cs(Es, Hs, ls) = ces(Es) + cps(ps(Hs, ls)), (3.8)

where Es is the remaining energy, and Hs is the history of revealed locations of s. ces is a

function that gives the energy cost of taking a measurement and transmitting it to the

aggregator, and cps is a function that calculates the cost of the sensor’s privacy loss due

to revealing its location. The privacy loss is computed by the function ps. We do not

impose any restrictions on the form of these two functions.

3.3 Our Data Acquisition Approach

In this section we describe our approach to the problem of utility-driven data acquisition

for a mixture of queries of different types. We first introduce data acquisition for each

query type. Data acquisition for the query mix, which is based on the data acquisition

algorithms for individual query types, is explained in the end of this section.

3.3.1 Single-Sensor Point Queries

We present two algorithms for answering single-sensor point queries. The first one finds

the optimal solution but does not scale to large problem instances. The second one is

an efficient heuristic approximation.
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Symbol Semantic

θq,s quality of readings from sensor s for query q (in [0, 1])

τs trustworthiness of sensor s (in [0, 1])

γs inaccuracy of sensor s (in [0, 1])

Bq budget for query q

vq utility function for query q

Es remaining energy for sensor s

Hs history of revealed locations for sensor s

ls location of sensor s

lq location queried by query q

cs/ces/c
p
s total/energy/privacy cost for sensor s

T/t total considered time period/specific time slot

Q/Q/Ql all queries in T/ in the current time slot/ at location l

K/K set of all possible allocation schemes/specific allocation scheme

M/M set of all possible allocation schemes/specific allocation scheme in one time slot

T /T ′ set of desired sampling times/set of sampled times for a location monitoring query

πq,s the payment of query q to sensor s

Table 3.1: Summary of introduced symbols

3.3.1.1 Optimal Scheduling

When there exist only point queries in the current time slot, we can express the optimized

sensor allocation problem as a Binary Integer Linear Program (BILP). Assume n sensors

are available and L locations are queried. For each queried location l, by ml queries,

we define a binary variable Y l
i ∈ {0, 1} for each i = 1, . . . , n, which states whether or

not sensor i is assigned to location l. For each sensor i, let Xi ∈ {0, 1} denote whether

or not sensor i is assigned to any location. We denote by ci the cost of sensor i. The

following BILP solves the problem of optimally assigning sensors to answer single-sensor

point queries:

max

L∑
l=1

n∑
i=1

v′l(si)Y
l
i −

n∑
i=1

ciXi,

s.t.

Y l
i ≤ Xi ∀i, l, and

n∑
i=1

Y l
i ≤ 1 ∀l.

(3.9)

In the above formula v′l(si) is defined as:

v′l(si) =

{
vl(si) if vl(si) > 0

−1 otherwise,
(3.10)

where vl(si) =
∑

q∈Ql vq(si) in which Ql is the set of queries at location l.

We split the sensor cost among queries proportionally to the value it yields to each

query (proportionate cost allocation.) In other words, if Y l
s = 1, then the user who has
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issued the query q∗ ∈ Ql has to pay according to the following:

πq∗,s =
vq∗(s) · cs∑L
a=1 v

′
a(s)Y

a
s

. (3.11)

This cost sharing scheme ensures that each query receives a positive net benefit because

a sensor is selected only if the total valuation it yields is greater than its cost. It follows

that πq,s < vq(s) for each q that is answered by sensor s.

3.3.1.2 Heuristic Scheduling

Instances of the optimization problem (3.9) can be solved optimally by an ILP solver

as long as the input size is not very large. When the input size is very large, we can

resort to an approximation algorithm. We define the utility function u : 2S → R as the

following:

u(S′) =
∑
l∈L

max
s∈S′

vl(s)−
∑
s∈S′

cs, (3.12)

where S′ ⊆ S. Then the optimal sensor allocation problem reduces to finding S∗ ⊆ S

such that S∗ = arg maxS′⊆S u(S′). Once the optimal set of sensors is determined, each

sensor is assigned to a query location for which it yields the best valuation compared to

other sensors. It can be shown that u(.) is a (non-monotone) submodular function.

A 1
3 -approximation algorithm for non-monotone submodular functions, referred to as

Local Search algorithm, is proposed in [40]. This algorithm, presented in Algorithm 3.1,

works as follows. It starts by adding the sensor which maximizes the utility function

to the set of selected sensors W . Then it iteratively adds to W those sensors that

increase the utility more than a certain threshold. In the next step, it removes from W

the sensors that have become obsolete and then goes to the previous step. These steps

are repeated until no obsolete sensors are found. If u(W ) ≥ u(S\W ), then the set W

is returned, otherwise S\W is returned as the set of selected sensors. This algorithm

requires at most O(n3 log n) calls to the utility function, where n is the number of

available sensors. It is worthwhile to mention that a randomized local search algorithm

is also proposed in [40], which achieves a 2
5 -approximation of the optimal solution. More

recently, a deterministic 1
3 -approximation algorithm (see Section 4.3.1) and a randomized

1
2 -approximation algorithm have been proposed in [17]. However, in our experiments we

only use the Local Search algorithm. The bounds for these approximation algorithms

can be guaranteed only when the function is not negative. In order to make the above

utility function non-negative we add the sum of all sensor costs to the value of the

function.

3.3.2 Multiple-Sensor One-shot Queries

There exist queries which ask for measurements from more than one sensor. These

queries include, but not limited to, spatial aggregate queries, queries over trajectories,

and multiple-sensor point queries. At each time slot several of these queries can arrive to

the aggregator. Many of them require data about the same phenomenon over different
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Algorithm 3.1: Local Search

Data: Set S of available sensors, and utility function u(.)
Result: The set of selected sensors

1 n← |S|
2 s∗ ← arg maxs∈S u({s})
3 W ← {s∗}
4 done← 0
5 while done = 0 do
6 while ∃s ∈ S\W s.t. u(W ∪ {s}) > (1 + ε

n2 )u(W ) do
7 W ←W ∪ {s}
8 if ∃s ∈W s.t. u(W\{s}) > (1 + ε

n2 )u(W ) then
9 W ←W\{s}

10 else
11 done← 1

12 if u(W ) > u(S\W ) then
13 return W

14 else
15 return S\W

(potentially overlapping) regions. In order to maximize the overall utility, the aggregator

must exploit as much as possible the common data requirements among these queries

and select the best set of sensors that provide the required data. The problem of finding

the optimal set of sensors is a combinatorial problem, since we have to enumerate all

possible sensor assignments to queries and select the one that maximizes the overall

net benefit. Therefore, we propose a greedy approach, presented in Algorithm 3.2, that

iteratively selects sensors that maximize the partial overall utility.

The objective is to maximize the following utility function:

u(S′) =
∑
q∈Q

vq(S
′)−

∑
s∈S′

cs, (3.13)

where S′ is the set of selected sensors, and Q is the set of queries. When all vq’s are

submodular, it can be shown that u(.) is also a submodular (non-monotone) function.

While the algorithms proposed in [40] have proven performance guarantees for sub-

modular functions, it is shown that the greedy algorithm can perform arbitrarily badly

compared to the optimal solution. However, because the valuation functions are taken

as black boxes, we use Algorithm 3.2 unless we have knowledge about submodularity

of the valuation functions. In this case, we can adapt the aforementioned algorithms

for non-monotone submodular function. The reason behind using Algorithm 3.2 instead

of always utilizing the adapted approximate algorithms in [40] is that when the utility

functions are not submodular, experimentally the former performs better in terms of to-

tal utility and it’s also faster. It is worth mentioning that, for example, function (3.5) is

not submodular, even though it is known that the coverage function is submodular. In-
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volving sensor quality in evaluation of a set of sensors destroys the submodularity of the

function. Only when all the sensors have the same quality, function (3.5) is submodular.

Algorithm 3.2: Greedy Sensor Selection

Data: Set Q of queries, S of available sensors, and quality valuation function vq
of each query q.

Result: S\S̃ is the set of selected sensors.
1 S̃ ← S
2 ∀q ∈ Q,Sq ← ∅
3 while S̃ 6= ∅ do

4 ∀s ∈ S̃, Qs ← ∅
5 foreach s ∈ S̃ and q ∈ Qls do
6 ∆vq,s ← vq(Sq ∪ {s})− vq(Sq)
7 if ∆vq,s > 0 then Qs ← Qs ∪ {q}
8 s∗ ← arg maxs∈S̃

∑
q∈Qs ∆vq,s − cs

9 if
∑

q∈Qs∗ ∆vq,s∗ − cs∗ > 0 then

10 ∀q ∈ Qs∗ , Sq ← Sq ∪ {s∗}; πq,s∗ ←
∆vq,s∗ ·cs∗∑
q′∈Qs∗

∆vq′,s∗

11 S̃ ← S̃\{s∗}
12 else Leave the while loop

Theorem 3.3.1. Let S′ = S\S̃ denote the set of selected sensors after Algorithm 3.2

terminates. Let Sq = S
(m)
q = {s1, s2, ..., sm} be the set of selected sensors for query q,

where m is the number of these sensors. We have the following properties:

1.
∑

s∈Sq ∆vq,s = vq(Sq), ∀q ∈ Q.

2. If S′ 6= ∅, then
∑

q∈Q vq(Sq) >
∑

s∈S′ cs, that is, the total utility is positive.

3. vq(Sq) >
∑

s∈Sq πq,s, ∀q ∈ Q, that is, the individual utility is not negative.

4. The algorithm requires O(|Q||S|2) calls to the valuation functions.

Proof. The first property is proved using the definition of ∆vq,s, the partial valuation of

a sensor s for a query q:

∑
s∈Sq

∆vq,s =

m∑
i=1

∆vq,si =

m∑
i=1

(
vq(S

(i−1)
q ∪ {si})− vq(S(i−1)

q )
)

=

m∑
i=1

(
vq(S

(i)
q )− vq(S(i−1)

q )
)

= vq(S
(m)
q )− vq(S(0)

q )

=vq(S
(m)
q ) = vq(Sq).

The second property can be easily proved by using property 1 and the fact that the

algorithm ensures
∑

q∈Q ∆vq,s− cs > 0 for each selected sensor s. The proof of the third

property is straightforward in the same way as for property 2 and by using the definition

of proportionate cost allocation. The algorithm goes through the sensors in S̃ in every
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iteration (at most |S| iterations) and this continues until S̃ becomes empty. In each

iteration all queries are considered. Therefore, the time complexity of Algorithm 3.2 is

O(|Q||S|2).

3.3.3 Continuous Queries

We propose Algorithm 3.3 for providing the required data for a set of location monitoring

queries. Each query q continuously needs the value of a phenomenon at location q.l in the

time period q.t1 to q.t2. The desired sampling times of query q is denoted by q.T . The

main objective of the algorithm is to obtain a measurement for each t ∈ q.T . However,

because of the uncertainty in succeeding to satisfy all the desired sampling times, we

also follow an opportunistic approach to obtain measurements at all t′ /∈ q.T .

At each time slot t, for each available location monitoring query, CreatePointQuery()

is called to create a point query at the queried location. After execution of the created

point queries, procedure ApplyResults() is invoked to apply the results for each query.

Consider one location monitoring query q. If t ∈ q.T , or if sampling at the last sampling

time has been failed, or if t is greater than the final requested sampling time, a point

query is created. The maximum value for the valuation function of the point query is

denoted by ∆v, which is the valuation of taking a sample at time t. When none of these

conditions hold, the current extra budget is calculated and a fraction, denoted by pa-

rameter α, of this extra budget is used for a point query. The reason behind using only a

fraction of the extra budget is to be able to keep some extra budget for uncertain future

samples. A natural way for specifying α is to start with a small value and increase it (or

possibly decrease it) as we learn the difference between the utility obtained compared

to the expected utility and how much utility is expected to achieve in future. In this

algorithm, T .first returns the first sampling time in T , and T .next(t) returns the first

sampling time which is greater than t. Note that although omitted in the algorithm, vq

considers the quality of the collected sensor readings or the expected quality of a sensor

reading before the actual sensor selection at the current time.

Algorithm 3.4 is used for answering a set of region monitoring queries. The algorithm

uses two main functions: CreatePointQueries() and ApplyResults(). The first is called

Function CreatePointQuery(t, q)

Data: t is the current time and q is the query
Result: A point query for query q at time t

1 if t = q.t1 then

2 q.T ′ ← ∅; q.Ĉ ← 0
3 q.lst← −∞; q.nst← q.T .first
4 ∆vt ← vq(q.T ′ ∪ {t})− vq(q.T ′)
5 if t ∈ q.T OR q.nst =∞ OR q.lst < q.T ′.last then ∆v ← ∆vt

6 else ∆v ← min{α(vq(q.T ′)− q.Ĉ),∆vt}
7 return A point query ql with the valuation function with the maximum value of

∆v.
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Procedure ApplyResults(t, q, π)

Data: t is the current time, q is the query, and π is the amount that q must pay.
1 if π ≥ 0 then
2 q.T ′ ← q.T ′ ∪ {t}
3 q.Ĉ ← q.Ĉ + π
4 if t = q.nst then q.lst← t; q.nst← q.T .next(t)
5 else if t ∈ T then q.lst← t; q.nst← q.T .next(t)

for generating the required point queries, and the second is called for applying the

results after execution of point queries. Consider a single region monitoring query q

with region rq. At each time t, a query-specific function fq is consulted for obtaining

the desired sampling locations based on the current locations and costs of sensors in rq

and the remaining budget. For each sampling location, a point query is created with the

valuation function equal to the valuation improvement by the sensor at that location.

The generated point queries, Qt, are then executed along with all other point queries,

e.g., using one of the algorithms introduced in Section 3.3.1.

After execution of point queries we can make use of the sensors that are selected for

other queries if they fall into rq. The maximum total cost contribution from query q

for these sensors is α(Ct − Ĉt), where Ct is the expected cost to be spent, and Ĉt is the

actual cost spent in time t. The control parameter α is used for determining how much

extra budget to keep for the next time slots. The actual cost contribution depends on

the sensors’ costs and their valuation improvement for the query.

Sensor data sharing is possible when the query regions overlap. This potential data

sharing can be incorporated in Algorithm 3.4 by providing the input set SCr,t to the

function fq as a set containing weighted costs of sensors. For example, when some sensors

are already selected for other queries, a weight of zero can be assigned to their costs in

SCr,t. Also, a heuristic approach for increasing the selection chance of a sensor which

can be shared by k region monitoring queries, is to reduce its cost by a factor of w(k),

where w is a function that returns a real value between 0 and 1.

Because of the query budget constraints, a mechanism is needed to decide which

sensors to take measurements from and when. In the context of sensor networks, this

Algorithm 3.3: Sensor Selection for Location Monitoring Queries at time t

Data: Set Q of location monitoring queries, and quality valuation function vq of
each query q.

1 Qp ← ∅
2 foreach q ∈ Q do
3 Qp ← Qp∪ CreatePointQuery(t, q);

4 Select sensors for point queries in Qp and for each point query calculate its
payment πq,t. If the point query is not satisfied, set πq,t ← −∞.

5 foreach q ∈ Q do
6 ApplyResults(t, q, πq,t)
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Function CreatePointQueries(t, q, Sr,t, SCr,t)

Data: t is the current time, q is the query, Sr,t is the set of sensors in region q.r
at time t, and SCr,t is their corresponding locations and costs

Result: A set of point queries, the expected budget for the queries, and the set
of sensors which are supposed to answer the point queries

1 if t = q.t1 then

2 q.S ← ∅, q.Ĉ ← 0

3 Ct ← 0, Qt ← ∅
4 St ← fq(Sr,t, SCr,t, q.B − q.Ĉ)
5 foreach s ∈ St do
6 Create a point query qs with the valuation function vpq = vq(St)− vq(St\{s}).
7 Qt ← Qt ∪ qs; Ct ← Ct + cs

8 return {Qt, Ct, St}

Procedure ApplyResults(q,Qt, Ct, St, π, Ar,t)

Data: q,Qt, Ct, St are as for CreatePointQueries, π is the amount that q pays
for the satisfied point queries, and Ar,t is the set of sensors in region q.r
selected for other queries

1 foreach qs ∈ Qt, if qs is not satisfied do
2 St ← St\{s}

3 Ĉt ← π
4 Contribute to the costs of sensors in Ar,t\St by the maximum amount of

α(Ct − Ĉt) and update Ĉt accordingly.

5 q.S ← q.S ∪ (St ∪Ar,t); q.Ĉ ← q.Ĉ + Ĉt

problem is referred to as sensor selection problem. To be able to support a wide range of

applications, the queries are requested to provide a method for specifying the desired set

of sampling points at each time slot (fq in Algorithm 3.4.) In participatory sensing with

uncontrolled mobility, applications are faced with an obstacle for finding out all their

desired sampling points in advance: only at the current time we know which sensors are

located in the queried region. As a workaround, instead of finding upfront all the desired

sampling points, at each time slot we can select the best sampling locations based on

the available sensors in the queried region.

We propose Algorithm 3.5 as an example approach for finding the set of best sensors

to query for the current time tc. The sensors in the queried region along with their

costs and locations are provided as input to the algorithm. We assume that the current

location of sensors will not change in the future. Even with this simplifying assumption,

the problem is NP-complete. The proposed solution is hence a greedy approach. Notice

that even though the algorithm selects (sensor) locations for different time instances,

we are only interested in the locations for tc. The multiplication of the sensing quality

improvement by the fraction of the remaining time over the duration of the query is an

attempt to increase the chance of selecting sensors for the current time.
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Algorithm 3.4: Sensor Selection for Region Monitoring Queries at Time t

Data: Set Q of region monitoring queries, and quality valuation function vq of
each query q.

1 Qp ← ∅
2 forall the q ∈ Q do
3 Compute Sr,t and SCr,t
4 X[q]← CreatePointQueries(t, q, Sr,t, SCr,t)
5 Qp ← Qp ∪X[q].Qt

6 Select sensors for point queries in Qp.
7 foreach q ∈ Q do
8 π ← the payment of q for the satisfied point queries in X[q].Qt
9 Ar,t ← selected sensors in region q.r at time t for other queries

10 ApplyResults(q,X[q].Qt, X[q].Ct, X[q].St, πq, Ar,t)

Algorithm 3.5: Sampling point selection for a region monitoring query at time
tc.

Data: Set S of available sensors in queried region rq of query q, the budget B,
and function F that quantifies the value of a set of sensors.

Result: Stc is the set of locations to query at current time tc.
1 C ← 0
2 St ← ∅ for all t = tc, . . . , q.t2
3 while C < B do
4 foreach s ∈ S do
5 foreach t = tc to q.t2 do
6 if s /∈ St then

88 δs,t ← (F (St ∪ {s})− F (St)) θs
q.t2−t
q.t2−q.t1

9 (s∗, t∗)← arg maxs,t δs,t
10 St∗ ← St∗ ∪ {s∗}
11 C ← C + cs∗

3.3.4 Query Mix

When the aggregator receives queries of different types, it has the possibility of sharing

the sensors among them and hence increasing the total utility. Indeed, since individually

finding an optimal set of sensors for multiple point or aggregate queries is NP-Complete,

finding the optimal set of sensors for the combination of queries is also NP-Complete.

We therefore propose Algorithm 3.6 for selecting sensors considering the commonalities

between the queries at hand.

This algorithm consists of four stages. In the first stage, the required point queries are

generated for available location monitoring and region monitoring queries. For doing so,

the functions CreatePointQuery used in Algorithm 3.3 and CreatePointQueries used

in Algorithm 3.4 are called. In the second step, all the queries are jointly provided to

Algorithm 3.2 as the input. This greedy algorithm selects the sensors with the objective

of increasing the total utility and computes the amount that each query will be charged
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for using the data from the assigned sensors. In the next stage, the results of the point

queries generated for continuous queries are applied using the procedures ApplyResults

used in Algorithms 3.3 and 3.4. The cost contribution from region monitoring queries

for the extra sensors that they can use necessitates the adjustment of the payments for

other queries sharing the same sensors. In the last stage, selected sensors are asked

to send their measurements, which are then sent to the higher level query processor.

Finally, the users are charged the amount that is calculated in the previous stage and

each selected sensor is paid its announced price.

Algorithm 3.6: Data Acquisition for Query Mix

Data: Set Qagg, Qp, Qlm, Qrm of aggregate, point, location monitoring, and
region monitoring queries, set S of available sensors, and quality valuation
function vq of each query q.

. Point query creation for continuous queries
1 [Function CreatePointQuery ] Create required point queries for location

monitoring queries Qlm. Let Qlmp denote the generated point queries.

2 [Function CreatePointQueries ] Create required point queries for region
monitoring queries Qrm. Let Qrmp denote the generated point queries.

. Sensor selection

3 [Algorithm 3.2] Input all the queries Qagg ∪Qp ∪Qlmp ∪Qrmp to Algorithm 3.2 for

sensor selection.
4 [Algorithm 3.3 and 3.4] Run Algorithms 3.3 and 3.4 for applying the results of the

corresponding point queries.
. Payment adjustment

5 Adjust the payments to be asked from the queries based on the potential cost
contribution resulting from Step 4.
. Data acquisition and accounting

6 Ask the selected sensors to provide their measurements.
7 Provide the data to the query processor. Charge the users whose queries have

been satisfied and pay the cost of selected sensors.

3.4 Experimental Evaluation

In order to prove the effectiveness of our utility-driven data acquisition framework, we

have conducted a thorough simulation study using real and synthetic mobility datasets.

In the following we first introduce these datasets and then for each query type presents

the experiments and their results.

3.4.1 Setup

We consider a simulation period of 50 time slots in all the experiments. At each time

slot new queries are generated and then executed jointly with the existing continuous

queries, if any. The inaccuracy of each sensor is chosen randomly from the interval

[0, 0.2]. We refer to the maximum number of readings that a sensor can provide as the

lifetime of the sensor. When the number of measurement taken by a sensor reaches
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its lifetime, it cannot be used anymore in the subsequent time slots. Unless otherwise

stated, the lifetime is equal to the simulation period. We use two simple energy cost

models: A fixed cost model defined by ces(Es) = Cs, and a linear cost model defined by

ces(Es) = Cs(1 + β(1− Es)), where Cs is a fix price, and β is the cost increment factor.

We assume the aggregator is a trusted entity and therefore, the sensors always report

their true locations to the aggregator. However, the other consumers of the data are not

trusted. The privacy computation model employed in the simulations works as follows:

each sensor keeps a history of the times when it has reported a measurement to the

aggregator. The size of the history is called the privacy window and is denoted by w.

The privacy loss is the weighted average of the time distances between the times when

a data is reported and the current time t:

ps(Hs, ls) =
w +

∑
t′∈Hs (w − (t− t′))

w(w+1)
2

. (3.14)

Function (3.14) puts more weight on the recent data reporting times. Therefore,

by applying this function, the sensor device tries to avoid reporting measurements in

consecutive time instances, hence hiding its trajectory. We consider 5 different privacy

sensitivity levels (PSL) for the sensor devices, namely Zero, Low, Moderate, High, and

Very High, which are, respectively, mapped to values 0, 0.25, 0.5, 0.75, 1. The privacy

cost function is defined as:

cps(ps(Hs, ls)) = PSLs ∗ ps(Hs, ls) ∗ Cs. (3.15)

In all the experiments we set Cs = 10 and unless stated otherwise, we use the fixed cost

model for energy and we set the privacy sensitivity level to Zero.

A trust value in the interval [0, 1] is assigned to each sensor. A trust value of zero

indicates that the sensor readings cannot be trusted at all, while the trust value of one

implies that the sensor readings are fully trusted. Even though the trustworthiness of the

sensors can change over the course of time, for simplicity, we assume that this parameter

remains unchanged over the whole simulation period. Since the trust or reputation

assessment of sensors is not the focus of this work, we assume that there is a trust

assessment mechanism in place which assigns trustworthiness values to the sensors upon

initialization. In the simulations, unless specified otherwise, the sensors are assumed to

be fully trusted.

3.4.2 Datasets

We use two mobility datasets: RWM generated based on the random waypoint model

[57], and RNC which is a real mobility dataset from Nokia campaign 1. In RWM each

sensor moves from its current location with a speed randomly selected between zero and

a sensor-specific maximum speed. The direction of the movement is either up, down,

left, or right, and is randomly selected. The movements are limited to a region of 80×80

1http://opensense.epfl.ch
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grids. Upon initialization the maximum speed of each sensor is set randomly to 4 or

5, which are spread randomly in the region. Only a central subregion of 50 × 50 is

considered by the aggregator as the working region (or the “hotspot”). That is, only the

queries and sensors that are bounded by this subregion are considered, but sensors can

enter and leave this subregion. The default number of sensors for the experiments using

RWM is 200.

RNC is derived from a data collection campaign in Lausanne, Switzerland consisting

of location information of 180 participants. The whole region of movement is griditized

into grids of length 100 meters. Only a region of 237 × 300 grids is considered and the

working subregion is set to be a subregion of size 100×100. Because of the high sparsity

of this mobility data, we have shifted the movement times to have more users in the

same day. We also added some dummy users with the mobility patterns of the existing

users but with randomly selected starting location and time of the movement from the

real trajectories. This resulted in having in total 635 sensors in the whole region and on

average 120 sensors in the working subregion in each time slot.

In the simulations involving region monitoring queries, we use Intel Lab dataset 2.

The simulations are performed over a 20 × 15 region. The reason for using this data

set is that in the experiments for region monitoring query we need to have real sensor

readings in addition to mobility data. Since the sensors in the Intel Lab deployment are

stationary, we assign the sensor readings to the grids in which they are located. Then

we use a random waypoint model for generating mobility data for 30 imaginary sensors.

The sensor reading which is assigned to a grid is reported as the data for the imaginary

sensor that is located in that grid.

3.4.3 Single-Sensor Point Queries

We have implemented a baseline algorithm which in each time slot takes queries one

by one and for each query selects the sensor with maximum utility. A sensor that is

selected to answer a query at a certain location is also assigned to all other queries at

that location. The cost of the selected sensors is set to zero for the remaining queries.

This algorithm resembles execution on query arrival and data buffering for the duration

of a time slot.

In each time slot 300 users submit point queries each with the location randomly

picked over the working region. The valuation function (4.12) with θqmin = 0.2 is used

for all point queries. For finding the quality of each sensor reading, function (4.11) is used

with dmax = 5 for the experiments on RWM and with dmax = 10 for the experiments on

RNC.

Figure 3.3(a) shows the average utility achieved by different algorithms per time

slot w.r.t. the query budget when RWM is used. It can be seen that the Local Search

algorithm finds solutions close to the optimal ones. In this experiment, the query budget

is the same for all the queries. Figure 3.3(b) shows the fraction of point queries that

2http://db.csail.mit.edu/labdata
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are answered (satisfaction ratio) by different algorithms. Since the baseline algorithm

does not efficiently benefit from sensor sharing among queries, it cannot answer any

queries when the query budget is small (i.e., 7, 10). On the contrary, the optimal and

Local Search algorithms can always answer more than 60% of the queries. When the

query budget is big enough, the average utility and the satisfaction ratio achieved by

the algorithms become very close since the queries can afford the cost of any sensor. As

the budget increases, the satisfaction ratio converges to around 73%. This shows that

regardless of the amount of budget, about 27% of the queries can never be answered

because of the lack of sensors with acceptable quality in their vicinities. We recall that

our goal is to maximize utility, not to maximize the satisfaction ratio nor the quality

of results. This means that the optimal algorithm might not always achieve the best

satisfaction ratio compared to the heuristic algorithms. In other words, achieving higher

utility sometimes requires refusing answering queries for which a lower total utility can

be achieved.

Figures 3.4(a) and 3.4(b) show the results when RNC is used. Similar patterns as for

the experiment with RWM are observed. However, the average utilities and satisfaction

ratios are smaller than their counterparts in Figures 3.3(a) and 3.3(b). Besides the differ-

ence in the mobility patterns, the reason is that the simulation area in the experiments

with RNC is larger, hence the sensors are more sparsely distributed. Hereafter, we only

present the results on RNC dataset.

In practice we cannot assume that all the queries have the same budget. Therefore,

in the next experiment we chose the query budget uniformly at random in budget mean

±10. Figures 3.5(a) and 3.5(b) show that the results are very similar to when the fixed

budget scheme is used. Therefore, in order to highlight more easily the efficiency of the

algorithms, in all the next experiments we use the fixed query budget scheme.

Figures 3.6(a) and 3.5(b) illustrate that as the number of queries increases, the

possibility of sharing sensors among more queries increases, which results in more utility

and slightly higher satisfaction ratio. In the next experiment, we randomly pick the

privacy sensitivity level of each sensor and we set the sensors use the linear energy cost

function with β randomly chosen in [0, 4]. The results are depicted in Figures 3.7(a)

and 3.7(b) for lifetime 50 and in Figures 3.7(c) and 3.7(d) for lifetime 25. The figures

demonstrate that in general the utility and satisfaction ratio drop when the participants

become privacy sensitive and use non-constant energy cost (compare to Figures 3.4(a)

and 3.4(b).) The difference in the utilities when the lifetime is 50 and when it is 25 is

very small, which implies that only a few sensors are worn out during the simulation.

Due to their mobility, sensors might enter and leave the working region at any time,

which prevents sensors to be exhaustively used.

3.4.4 Spatial Aggregate Queries

Since other types of multiple-sensor one-shot queries introduced in this chapter can be

treated similarly to the spatial aggregate queries, we only consider this query type. We

have implemented a baseline algorithm for answering multiple-sensor one-shot queries
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Figure 3.3: Single-sensor point queries, RWM dataset, a) average utility per time slot,
b) satisfaction ratio.
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Figure 3.4: Single-sensor point queries, a) average utility per time slot, b) satisfaction
ratio.

which resembles sequential execution of queries with data buffering. It takes the queries

one by one and for each query selects the sensors that result in best utility. The cost

of the selected sensors is set to zero for the subsequent queries in the time slot. The

valuation function (3.5) is used for all queries. The sensing range of sensors is set to 10

units. In each time slot the number of aggregate queries is selected uniformly at random

with the mean of 30 queries. The queried regions are generated randomly in the working

region. The query budget for each query q is set to
A(rq)
1.5πr2s

b, where A(rq) is the the size

of the query area, rs is the average coverage of the sensors (which is set to dmax), and b

is the budget factor.

Figure 3.8(a) shows the average utility per time slot w.r.t. the budget factor. Al-

gorithm 3.2 not only always significantly outperforms the baseline, but also can answer

queries even when the budget is small. Figure 3.8(b) shows the average quality of results

for the answered queries. The average quality of results for a query is the valuation of

the set of selected sensors for that query divided by the maximum value of its valuation

function.
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Figure 3.5: Uniformly distributed budget, a) average utility per time slot, b) satisfaction
ratio of point queries.
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Figure 3.6: Varying the number of queries, with query budget fixed to 15. a) Average
utility per time slot, b) satisfaction ratio of point queries.

3.4.5 Location Monitoring Queries

We use the technique proposed in [139] for determining the sampling times for a location

monitoring query. This algorithm works on the historical data and selects the sampling

times such that the residuals of the model based on the values at the sampling times

and the model given all the historical data is minimized. The number of sampling times

is assumed to be fixed and is given to the algorithm. This approach assumes that the

data values for the current time interval are almost the same as the data values in the

same time interval in the past. Even though this is a weak assumption, it shall not affect

the effectiveness of our data acquisition approach, which is designed to work with any

sampling method and any valuation function. We use a dataset containing a trace of

ozone measurements from a deployments in Zurich, Switzerland 3. A linear regression

3http://www.opensense.ethz.ch
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Figure 3.7: Random privacy sensitivity level and linear energy cost function, a) average
utility per time slot - lifetime 50, b) satisfaction ratio of point queries - lifetime 50, c)
average utility per time slot - lifetime 25, d) satisfaction ratio of point queries - lifetime
25.

model is used to model the data. We use the following valuation function:

vq(T ′,Θ) = BqG(T ′)
∑

θ∈Θ θ

|Θ|
, (3.16)

with

G(T ′) =

∑N
i=1 r

2
i |T∑N

i=1 r
2
i |T ′

, (3.17)

where T is the desired sampling times, T ′ and Θ are the set of timestamps and qualities

of the samples taken so far, Bq is the query budget, N is the number of historical data

items, and ri|T is the difference between the actual value of the ith data item and the

modeled value from the model generated using only data items with timestamps in T .

The setting is that at each time slot the number of existing queries and new queries

is always less than 100. The location for each new query is randomly selected in the

working subregion. The duration of each query is randomly chosen from [5, 20] and the

number of desired sampling times is set to one third of the query duration. The budget

assigned to each query is equal to its duration times the budget factor. The parameter α

is set to the constant value 0.5. Figure 3.9(a) shows the average utility per time slot w.r.t.
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Figure 3.8: Aggregate queries, a) average utility per time slot, b) average quality of
results.

the budget factor using Algorithm 3.3 compared to a baseline approach. Alg3.3-O and

Alg3.3-LS state that, respectively, the optimal solution and the Local Search algorithm

are used for answering point queries. In the baseline approach point queries are generated

only at the desired sampling times and then the baseline approach introduced in Section

3.4.3 is used for answering the point queries. The average quality of results is shown in

Figure 3.9(b). The relatively small values for the average utility and average quality of

results stem from the lack of enough sensors close to the queried locations and the weak

assumption in the technique used in determining the best sampling times, which assumes

similar periodic patterns in the data. Nevertheless, our approach still outperforms the

baseline.
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Figure 3.9: Location monitoring queries, a) average utility per time slot, b) average
quality of results.

3.4.6 Region Monitoring Queries

In this experiment we assign the valuation function (3.7) to all region monitoring queries.

The parameters of the Gaussian model are learned from a fraction of sensor readings in
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Figure 3.10: Region monitoring queries, a) average utility per time slot, b) average
quality of results.

Intel Lab dataset. Function fq in Algorithm 3.4 is implemented based on Algorithm 3.5.

At each time slot one query is created with the query region randomly generated in the

simulation area. The duration of the query is randomly chosen in [5, 20]. The budget

assigned to each query is calculated as
A(rq)
3πr2s

b, where A(rq) is the size of the queried

region, rs is the average coverage distance of the sensors (2 in this case), and b is the

budget factor. The parameter α is set to the constant value 0.5. The following weight

function is used to modify the cost of a sensor which falls into the region of k > 0 region

monitoring queries:

w(k) =

{
11−k

10 k < 10

0.1 otherwise.
(3.18)

Figure 3.10(a) shows the average utility per time slot w.r.t. the budget factor using

Algorithm 3.4 compared to a baseline approach. In Algorithm 3.4 we use the optimal

solution for answering point queries. In the baseline approach we do not use cost weight-

ing and we omit sharing sensors that are selected for other queries and are not at the

locations requested by the query. In addition, the baseline approach introduced in Sec-

tion 3.4.3 is used for answering the point queries. Figure 3.10(b) shows that, most of

the times, the average quality of results is more than 1, which means that the valuation

of sensors selected for each query is more than what was requested by the queries. Note

that this is possible since F (A) is not bounded by 1.

3.4.7 Query Mix

In addition to Algorithm 3.6, we have implemented a baseline algorithm for answering

a mixture of queries of different types. In this algorithm, first the aggregate queries are

executed using the baseline algorithm for aggregate queries. The cost of selected sensors

is set to zero for subsequent queries in the current time slot. In the next step, the required

point queries are generated for continuous queries and then they are executed along with

the point queries issued by end users using the baseline algorithm for answering single-

sensor point queries. This baseline resembles sequential execution of queries in one time
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Figure 3.11: Mix of point, aggregate and location monitoring queries. a) average utility
per time slot for query mix, b) average quality of results for point queries, c) average
quality of results for aggregate queries, d) average quality of results for location moni-
toring queries.

slot with buffering data for the period of that time slot. The number of point, aggregate,

and location monitoring queries is the same as in the experiments for each individual

query type. Due to the lack of complete measurement data in RNC, we exclude region

monitoring queries in this experiment. Sensor lifetime is set to 25 and a random privacy

sensitivity level is assigned to each sensor. The linear energy cost function is used by

each sensor with parameter β randomly chosen in [0, 4].

Figure 3.11(a) shows the average utility per time slot w.r.t. the budget factor. It

can be seen that Algorithm 3.6 significantly outperforms the baseline approach. As

Figures 3.11(b), 3.11(c), and 3.11(d) show, the quality of results produced by the

baseline approach for each query type is either zero or very small when the budget is

small. In contrast, our approach can satisfy many queries even when the budget is small

thanks to more efficient sensor sharing.

In order to observe the impact of the trust value distribution, three trust assignment

schemes are considered in the next experiment. In the first scheme the trust values are

assigned uniformly at random from the interval [0, 1]. In the second scheme the trust

value is selected uniformly at random from the interval [0.5, 1]. In the last scheme all the
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Figure 3.12: Average utility per time slot for three different trust assignment schemes
for a mix of point, aggregate and location monitoring queries. The budget factor is 15.
Privacy sensitivity levels and linear energy cost factor are randomly chosen.

sensors are assumed to be fully trusted. Figure 3.12(a) shows that the average utility

per time slot increases as the trust value mean increases. This trend is indeed expected

because the utility has a direct relation with the trustworthiness of the sensors.

3.5 Related Work

In Chapter 2 we have presented the state of the art in the areas of sensor selection and

query processing and optimization in participatory sensing and sensor networks. In this

section, we provide a brief overview of some of these works that are more relevant and

compare them to our approach.

A utility-based sensor selection framework is proposed in [16] in which the applica-

tions can specify the utility of each set of sensors in a wireless sensor network. Submod-

ular and supermodular utility function classes are considered. The goal is to select a

sequence of sets to maximize the total utility while not exceeding the available energy. In

[115], the problem of sensor selection, where a set of sensors is selected according to the

maximum a posteriori or the maximum likelihood rules, is formulated as optimizations

of submodular functions over uniform matroids. A heuristic approach based on convex

optimization is proposed in [58] for the sensor selection problem with the objective of

minimizing the estimation error. In our scenario, the network model is different and the

objective is to maximize the net benefit. As we allow multiple applications, which po-

tentially have different valuation functions, we cannot identify upfront in which function

category our utility function falls.

Simultaneous placement and scheduling of sensors is considered in [70], where an

algorithm is proposed to efficiently and simultaneously decide where to place sensors

and when to activate them using the submodularity of the utility function. Two dis-

tributed sensor scheduling approaches are proposed in [46, 51]. These works are based
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on the assumption that the utility function is submodular. In our approach we pursue a

centralized solution, which is not restricted to submodular utility functions in order to

be able to handle applications with diverse requirements.

The work of [69] is perhaps the closest to our approach. We distinguish our work in

two main ways: 1) [69] tries to maximize the utility of data collection for the queried

locations assuming that the sensors are fully trusted and the budget is fixed. In con-

trast, we aim for maximizing the utility of several concurrent queries, potentially of

different types, assuming that the sensors are not fully trusted; 2) [69] assumes that the

phenomenon follows a known distribution and utilize this for the near-optimal sensor

selection, whereas we do not have any explicit assumption on the phenomenon and we

obtain the utility functions from the applications.

The problem of multi-query processing has been systematically defined in [112] in the

context of relational database systems. Lifetime-based and event-based queries are in-

troduces along with normal queries in sensor networks in [81]. Optimization techniques

such as reordering of predicates and event query batching has been used to preserve

power. Merging multiple user queries into one network query and then extracting user

data streams from network data streams is proposed in [93]. Optimizing multiple aggre-

gate queries in sensor networks is studied in [130] with the objective of minimizing the

communication cost while taking into account the processing limitations of the sensor

nodes. In order to reduce energy consumption in a wireless sensor network, rewriting

a new monitoring query based on the existing ones and evaluating it in the base sta-

tion rather than injecting it into the network is proposed in [73]. In the AdaptiveCQ

framework [129], for efficient processing of multiple continuous queries, the intermediate

results of queries are shared at a fine level without materializing them on disk. [60]

proposes a query planner for distributed stream processing systems which exploits over-

laps among queries and sharing partial results with the objective of efficient resource

allocation. In our approach, data sharing is implied without using techniques such as

query rewriting. However, after data acquisition, if necessary, more sophisticated query

optimization techniques can be performed in the higher level query processor.

3.6 Conclusion

In this chapter we proposed a holistic data acquisition framework for participatory sens-

ing environments, where multiple applications may pose multiple queries of different

types. We formulated the problem of optimal multi-query data acquisition with the

objective of maximizing the total utility. We proposed heuristic algorithms for maxi-

mizing the utility in a myopic way for the most important query types and their mixes

in this context. As a particular example, we considered efficient data acquisition for

continuous queries in a participatory sensing environment with no guarantees on the

data availability neither spatially nor temporally.
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Chapter 4
Truthful Data Acquisition in
Participatory Sensing

4.1 Introduction

The promising features of participatory sensing, come with several challenges that need

to be addressed. One of these challenges is that many people participate in participa-

tory sensing systems as long as they are compensated for their resource consumption

and privacy leakage. Many participants are sensitive to their privacy and might use

privacy protection mechanisms for reducing their privacy leakage. Privacy protection

mechanisms usually introduce some noise in the reported data or refrain to report the

existence of the participant in certain locations. Another issue is that we cannot always

assume that all participants are trustworthy as some of them might have incentives to

falsify the data. This can make data collection less efficient as it reduces the quality of

the data and possibly the coverage.

For overcoming these challenges, we need to design participatory sensing systems in

a way that (I) enough incentives are provided to people to participate; (II) enough incen-

tives are provided to the participants to truthfully report their measurements; and (III)

the participants are motivated to trade their privacy for more payoffs. In Chapter 3 we

assumed that the participants are compensated for the measurements that they provide

according to the price that they announce. However, the participants can overstate their

price to gain more payment. Therefore, mechanisms are needed to incentivize people to

participate and to truthfully report their cost information and their measurements. In

the rest of this chapter we use the term agent to refer to the participants.

The aim of the work in this chapter is to design mechanisms for truthfully eliciting

information from the agents in two main settings: when the agents are not concerned

about their location privacy and they are willing to reveal their exact location, and when

they are location privacy-aware and refrain from reporting their actual location. In all

63
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the settings we assume that the ground truth is observable after the aggregator (center

in mechanism design terms) obtains measurements from the agents. This can be the

case, for example, in a traffic monitoring setting, where the state of the traffic can be

observed sometime after reporting the measurements. Even though the assumption of

observing the ground truth holds in several cases, it is possible to estimate the ground

truth when it is not observable. For example, the ground truth can be estimated using

a spatio-temporal model of the phenomenon combined with multiple readings from dif-

ferent sensors [38, 89, 99, 134]. Finally, in this work, we focus on data acquisition in a

single time slot and do not consider long-term query processing and sensor scheduling.

Chapter 2 reviews the important literature in truthful data elicitation. The partic-

ipatory sensing scenario that we consider in this chapter is different from the common

scenario assumed in most of the existing work. We assume that the center cannot de-

termine the value of the reports from the agents on its own. For this purpose, it uses

the valuation functions that are provided by the applications. No restrictions are im-

posed on the form of valuation functions. In addition, in many of the existing works,

the privacy-reward trade-off is not addressed. For example, in the approaches based on

proper scoring rules such as [89, 99, 134, 145], the center cannot generate scoring rules

assuming that a single distribution of the event exists because each application might

use a different distribution. None of these works, and works such as [38, 67, 102, 105],

consider privacy conscious agents.

The main contributions of this chapter are the following:

• We formulate the problem of optimal data acquisition for multiple point queries and

we propose incentive compatible mechanisms for truthful cost and data elicitation

in participatory sensory context.

• We also propose mechanisms for truthful data elicitation when participants are

privacy conscious by allowing them to make trade-offs between their privacy and

monetary compensation. This trade-off is performed in a way that the center’s

utility is maximized.

• Through extensive simulations we demonstrate the effectiveness of our mechanisms.

The remainder of the chapter is organized as follows. In Section 4.2, we formulate

the problem of optimized sensor selection. We present our mechanisms for truthful data

elicitation in Section 4.3 and evaluate properties of these mechanisms in Section 4.4.

Finally, we conclude this chapter in Section 4.5.

4.2 Optimized Sensor Allocation

In this section, we formulate the problem of optimal data acquisition for multiple point

queries. In a participatory sensing system, different types of queries can be posed by

the end users. For example, they can issue point queries asking for the current value of

a phenomenon (e.g., CO2 level) at a specific location, or they can issue spatial aggregate
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queries asking for the aggregate value of the phenomenon over a region. In Chapter 3,

we introduced different query types and data acquisition algorithms. In this chapter, we

limit our focus only to point queries. In addition, we assume that for answering point

queries at a single location, only one measurement is required. If multiple queries ask

for a measurement at a specific location, the data obtained from a sensor at or near that

location is used for all of them.

Assume n agents are available. The sensor corresponding to agent i is denoted by

si. S = {s1, s2, . . . , sn} denotes the ordered set of sensors. Each query q has a limited

budget to spend for obtaining the query answer. Also, every query q comes with a

valuation function v̄q(si) that evaluates the quality of a measurement from sensor si, if

a measurement from si is to be used to answer the query. Since v̄q(si) is used before

observing the actual measurement of si, it gives an expectation of the valuation of the

measurement. Another function vq(x, x̂i, si) is assumed to be provided by each query q,

that gives the valuation of a measurement x̂i reported by sensor si, given the true value

of the phenomenon x at location of si. When the agents are privacy conscious, valuation

functions are expected to consider the uncertainty in the location of sensors (Section

4.3.2). The values given by the valuation functions are of unit of the currency that is

used for sensor costs and payments. Therefore, valuation functions must incorporate the

limited budget of the queries.

While valuation functions are provided by the queries and in our mechanisms they

are taken as black boxes, we can assume that the evaluation is based on the quality of

sensor readings for the queries. Sensor reading quality depends on several factors such

as the distance of the sensor from the queried location (more accurately, it depends on

the correlation between the phenomenon values at the queried location and the location

of the sensor), and the inherent sensing inaccuracy of the sensor.

In a given time slot the center collects several point queries asking for the phenomenon

value at various locations. The primary objective of the center is to answer the queries

in a way that the total utility provided to the queries are maximized. For doing so, it

has to solve an allocation problem to find the best sensors for providing measurements.

We can express the optimized sensor allocation problem as an (Binary) Integer Linear

Program (ILP) exactly as it is described in Section 3.3.1. Assume n sensors are available

and L locations are queried. For each queried location l, by ml queries, we define a binary

variable Y l
i ∈ {0, 1} for each i = 1, . . . , n, which states if sensor si is assigned to location

l. For each sensor si, let Xi ∈ {0, 1} denote if si is assigned to any location. We denote

by ci the cost of sensor si. The following integer linear program solves the problem of

optimally assigning sensors to answer queries such that the center’s utility is maximized.

It is also assumed that only one sensor is enough for answering all the queries at each
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Symbol Semantic

li location of agent i (or sensor si)

lq location queried by query q

Q/Ql all queries/queries for location l

ci/ĉi actual/reported cost of agent i

K/K set of all possible allocation schemes/specific allocation scheme

πi payment to agent i

ūi expected utility of agent i

γi number of cells in the obfuscation region (obfuscation level) of agent i

Ri obfuscated region reported by agent i

x̂i/xi measurement reported by/true value at location of agent i

Table 4.1: Summary of introduced symbols

location.

max

L∑
l=1

n∑
i=1

v′l(si)Y
l
i −

n∑
i=1

ciXi,

s.t.

Y l
i ≤ Xi ∀i, l

n∑
i=1

Y l
i ≤ 1 for l = 1, . . . , L

(4.1)

In the above formula, v′l(si) is given by:

v′l(si) =

{
vl(si) if vl(si) > 0

−1 otherwise,

where vl(si) =
∑ml

j=1 v̄qj (si). When vl(si) ≤ 0, then the above definition ensures Y l
i = 0.

Table 4.1 summarizes the notation we frequently use throughout this chapter.

4.3 Mechanisms for Truthful Data Elicitation

Having formulated optimal data acquisition for multiple point queries, in this section

we use the principals of Vickrey-Clarke-Groves (VCG) mechanisms for truthful data

elicitation. However, our mechanisms are two-stage mechanisms because a single VCG

mechanism does not work in our scenario. In a standard (single-step) VCG mechanism,

the utility of the center is calculated based on the reported types of the agents. However,

in our case, the utility of the center not only depends on the reported costs of the agents,

but also on the measurements that the selected agents provide to fulfill the sensing tasks.

Moreover, reporting costs and measurements cannot be merged in single stage because

the agents report their measurements only when they are selected by the center to

do so. In principle, our mechanisms consist of two stages. In the first stage a set of

agents is selected to fulfill the sensing task, based on their reported costs, such that the

expected center’s utility is maximized. In the second stage each selected agent reports

its measurement. The reported measurements are used to answer queries. Considering
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Mechanism 1 : SQ

1. First Stage

(a) Center asks agents to report locations and costs

(b) Center solves sensor assignment problem based on reported costs and
locations, and reputation of agents. Formally, it chooses agent i =
arg maxj∈{1,2,...,n} v̄Q(sj)− ĉj , where ĉj is reported cost of agent j

2. Second Stage

(a) Agent i reports its measurement x̂i

(b) After observing actual outcome x, center makes payment πi = vQ(x, x̂i, si)−
v̄Q(sj) + ĉj to agent i, where j = arg maxk∈{1,2,...,n}\{i} v̄Q(sk)− ĉk

the accuracy of this measurement, after observing the true value, the payment to the

agent is calculated.

4.3.1 Privacy Oblivious Agents

We start with the simplest case where it is assumed that the agents truthfully reveal

their locations. This is a reasonable assumption because if an agent gets selected to

report its data, its utility depends on the accuracy of the report. We assume that

the ground truth can be observed after the agents report their measurements. Having

multiple rounds and a reputation mechanism that assigns reputation scores to each agent

incentivise the agents to not lie if they are interested in increasing their long-term utility.

However, in this work we don’t deal with this issue.

4.3.1.1 Single Query Location

We consider the case of existing queries at a single location and we seek to select a sensor

that can provide data for this location which yields the greatest utility for the queries.

Let Q denote the set comprising these queries. The expected valuation of a sensor si is

denoted by v̄Q(si) =
∑

q∈Q v̄q(si), which is calculated based on the expected quality of

a measurement from si.

After observing the true value x, we use vQ(x, x̂i, si) =
∑

q∈Q vq(x, x̂i, si), for calcu-

lating the actual valuation. We propose SQ , a two-stage mechanism for incentivising

the agents to truthfully report their costs and measurements. This mechanism is in-

spired by [102], which addresses assigning tasks to agents whose private information is

not only their costs of performing tasks but also their failure probabilities. However, in

our scenario in addition to the costs, we deal with the quality of reported measurements.

SQ is incentive compatible in the first stage regarding the costs. It is also incentive

compatible in the second stage with regard to reporting the measurement. Finally, it is

individually rational in expectation. With the payment defined in the second stage of
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SQ , the expected utility of the selected agent is:

ūi = v̄Q(si)− v̄Q(sj) + ĉj − ci, (4.2)

where ci is the actual cost of agent i. We show that reporting the true cost is the

dominant strategy in the first stage. If ĉi > ci, there are two possibilities: 1) agent i is

the selected agent, but since its utility does not depend on ĉi, it will receive the same

utility as when it reports the true cost, and 2) agent i is not selected and hence receives

no utility, but it would be selected if the agent reported the actual cost. Therefore,

agent i does not have any incentive to exaggerate its cost. If ĉi < ci, there are again two

possibilities: 1) agent i would be selected even if it told the truth and therefore, agent i

does not increase its utility, and 2) agent i would not be selected if it reported its true

cost. From v̄Q(si)− ci < v̄Q(sj)− ĉj it follows that:

ūi = v̄Q(si)− v̄Q(sj) + ĉj − ci < 0.

Hence, agent i does not have any incentive to under-report its cost. This proves that

reporting true costs in the first stage is the dominant strategy.

Reporting true measurements in the second stage is the dominant strategy since the

only way agent i can increase its utility is to report a value as close as possible to the true

value (which will later be determined by the center). If agent i is not selected then it gets

zero utility, otherwise it will receive in expectation ūi = (v̄Q(si)− ci)− (v̄Q(sj)− cj) > 0.

Hence, SQ is individually rational in expectation. Note that it is possible that after

reporting its measurement, agent i receives negative utility due to its accuracy being

lower than the average accuracy expected by the center.

4.3.1.2 Multiple Query Locations - Optimal Allocation

Now we consider the more general case of having multiple query locations. The inte-

ger program (4.1) assigns sensors to queries such that the overall utility is maximized.

However, for the ease of presentation we introduce a simplified notation. Let K be the

set of possible allocation schemes. If K ∈ K, then vq(K) is the valuation of query q

for allocation K. Hence, if si is selected to provide a measurement for query q, then

v̄q(K) = v̄q(si). We denote by S(K) and L(K, i) the set of sensors that are allocated to

queries and the set of query locations that are assigned by K to sensor si, respectively.

The set of queries at location l is denoted by Ql. This setting is somewhat similar to

the case of multi-task assignment with non-combinatorial valuation in [102]. However,

our problem differs from theirs in the sense that instead of dealing with the probabil-

ity of success in performing the tasks, we are concerned with the accuracy with which

the tasks are performed. Mechanism MQOPT , which is the generalized version of SQ ,

incentivises the agents to truthfully report their costs and then their measurements for

the queries assigned to them.

MQOPT has all the economic properties of SQ . We can prove that reporting true

costs in the first stage is the weakly dominant strategy for agents. Incentive compatibil-

ity regarding reporting measurements in the second stage and individual rationality in
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Mechanism 2 : MQOPT

1. First Stage

(a) Center asks agents to report locations and costs

(b) Center solves sensor assignment problem based on reported costs and loca-
tions. Formally, it finds allocation

K∗ = arg max
K∈K

(
∑
l∈L

v̄Ql(K)−
∑

i∈S(K)

ĉi)

2. Second Stage

(a) Each agent i ∈ S(K∗) reports its measurement x̂i to center

(b) After observing actual outcomes xi for all i ∈ S(K∗), center makes following
payment to each selected agent i:

πi =
∑

l∈L(K∗,i)

vQl(xi, x̂i, si) +
∑

l∈L(K∗,−i)

v̄Ql(K
∗)−

∑
j∈S(K∗)\{i}

ĉj

− max
K′∈K−i

∑
l∈L

v̄Ql(K
′)−

∑
j∈S(K′)

ĉj

,
where K−i is set of allocations excluding i and L(K∗,−i) is set of locations
assigned to agents other than i.

expectation can also be proved. We proceed by proving the incentive-compatibility of

the mechanism by assuming that agent i reports ĉi instead of its true cost ci. We consider

two cases. If ĉi > ci, then two outcomes are possible: 1) agent i is among the selected

agents. Since i’s utility does not depend on its reported cost, it gains nothing, and 2)

agent i is not selected but it would be selected and hence it would receive positive utility

(in expectation) if it told the truth. Therefore, agent i does not have any incentives to

overstate its cost. If ĉi < ci, then again we consider two possibilities: 1) agent i is not

selected hence receives no utility, and 2) agent i is selected but it would not be among

the selected agents if it told the truth. We denote the optimal allocation by K̂∗ given

the reported costs of all agents including ĉi. Define w(K) =
∑

l∈L v̄Ql(K)−
∑

j∈S(K) ĉj ,

where v̄Ql(K) =
∑

q∈Ql v̄q(K). Let w−i(K) denote the center’s utility by all agents but

i, and let K∗−i denote the optimal allocation ignoring agent i. The expected utility of i

can be defined as follows:

ūi =
∑

l∈L(K̂∗,i)

v̄Ql(si) + w−i(K̂
∗)− w(K∗−i)− ci.

But w(K̂∗) =
∑

l∈L(K̂∗,i) v̄Ql(si)− ĉi + w−i(K̂
∗). Therefore,

ūi = w(K̂∗)− w(K∗−i)− ci + ĉi.
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It can be easily seen that w(K̂∗) − w(K∗−i) ≤ ci − ĉi (or else i wouldn’t be selected by

K̂∗). It follows that ūi ≤ 0. Hence, agent i does not gain in utility by understating its

cost.

If agent i does not get selected, it receives zero utility by participation. If it gets

selected it’s expected utility is ūi =
∑

l∈L(K∗,i) v̄Ql(si) + w−i(K
∗)− w(K∗−i)− ci. Since

the agent is truthful, ĉi = ci. Therefore, ūi = w(K∗)−w(K∗−i). Since i has been selected

by the optimal allocation, w(K∗) ≥ w(K∗−i), which follows that ūi ≥ 0. This shows that

the mechanism is individually rational in expectation.

4.3.1.3 Multiple Query Locations - Approximate Allocation

The linear program (4.1) can be solved in reasonable times when the problem instance is

not very large. Otherwise we need to resort to approximation algorithms. The payment

scheme in MQOPT does not guarantee incentive compatibility of the mechanism when

the allocation scheme is not optimal. However, we can prove that our optimal allocation

problem can be formulated as maximizing a non-monotone submodular function. More

specifically, we can formulate the center’s utility function as:

u(S′) =
∑
l∈L

max
si∈S′

vQl(si)−
∑
si∈S′

ci. (4.3)

This function states that for a set of selected senors S′, the utility is calculated by

assigning a sensor to each location such that the valuation of the queries at that location

is maximized. The objective of the optimal allocation is to find a subset of S that

maximizes u(.). Algorithm 4.1 presents the deterministic 1
3 -approximation algorithm for

maximizing (non-negative) non-monotone submodular functions that is proposed in [17].

Algorithm 4.1: DeterministicUSM

Data: Non-monotone submodular function u(.), and set of all sensors S, where
|S| = n

Result: Set of selected sensors Xn
X0 ← ∅, Y0 ← S
for i← 1 to n do

ai ← u(Xi−1 ∪ {si})− u(Xi−1)
bi ← u(Yi−1\{si})− u(Yi−1)
if ai ≥ bi then
Xi ← Xi−1 ∪ {si}, Yi ← Yi−1

else
Xi ← Xi−1, Yi ← Yi−1\{si}

return Xn

It is known that any (normalized 1) auction that has the following characteristics is

incentive compatible ([11]):

1An auction is normalized if a losing agent has a zero payment.
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1. The allocation scheme is bid-monotone: if user i wins by bidding bi, it also wins

by bidding b′i ≤ bi.

2. Each winner pays its critical value.

For a winning agent i we define cci as its critical cost if agent i wins with any ĉi ≤ cci
and loses with any ĉi > cci . The critical cost can be found by performing a progressive

binary-like search assuming that the cost is not a continuous real value. We define the

following payment scheme:

πi = ti + β
∑

l∈L(K̃∗,i)

vQl(xi, x̂i, si), (4.4)

where K̃∗ is the allocation scheme given by Algorithm 4.1, and ti = cci−β
∑

l∈L(K̃∗,i) v̄Ql(si),

and 0 < β ≤ 1 is a tuning factor. We call the resulting mechanism MQAPPROX .

It is easy to prove that the above algorithm is bid-monotone: Assume agent j is

among the selected agents when it reports its true cost cj . Now assume that j reports a

lower cost ĉj < cj . Let ∆cj = cj − ĉj , and consider step j of the algorithm. Denote by

a′j , b
′
j , and u′ the utility differences and the utility function when j is not truthful. We

have

a′j = u′(Xj−1 ∪ {sj})− u′(Xj−1)

= u(Xj−1 ∪ {sj})− u(Xj−1) + ∆cj = aj + ∆cj ,

b′j = u′(Yj−1\{sj})− u′(Yj−1)

= u(Yj−1\{sj})− u(Yj−1)−∆cj = bj −∆cj .

From aj ≥ bj we can conclude that a′j ≥ b′j . This shows that sj will be included in Xj ,
hence j will be selected.

The bounds for Algorithm 4.1 can be guaranteed when the function is non-negative,

while u(.) can be negative. In order to resolve this issue, we can add
∑

si∈S ci to u(.) to

guarantee that it will never be negative. However, in Algorithm 4.1 this modification is

not necessary since this additional term will be cancelled out in all calculations.

4.3.2 Privacy Conscious Agents

So far we have assumed that the agents reveal their exact location to the center. However,

it might be the case that some agents are concerned about their location privacy. In

this case, they use a location privacy protection mechanism to reduce the probability of

inferring their exact location. One common approach for protecting location privacy is

called location obfuscation, which reduces the accuracy and/or precision of the reports

[118]. Among different location obfuscation methods, we assume the agents use either

the perturbation method, which adds some random locations, or reducing precision or

region merging method which adds a set of locations around the real location of the

agent. These locations along with the true location are then reported to the center. For
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Mechanism 3 : PRIV STRICT

1. First Stage

(a) Center asks agents to report obfuscated locations and costs

(b) Center solves sensor assignment problem based on reported costs and loca-
tions of the agents. Formally, it finds the allocation

K∗ = arg max
K∈K

∑
i∈S(K)

 ∑
l∈L(K,i)

ṽQl(si, Ri)− ĉi

,
where ṽQl(si, Ri) gives expected valuation of a measurement of si located
somewhere in Ri, for queries at l.

2. Second Stage

(a) Each agent i ∈ S(K∗) reports its measurement x̂i to center

(b) After observing actual outcomes for all r ∈ Ri, center makes following pay-
ment to each of the selected agents i:

πi = h(K∗, Ri, x̂i) +
∑

j∈S(K∗)\{i}

 ∑
l∈L(K∗,j)

ṽQl(sj , Rj)− ĉj


− max
K′∈K−i

∑
l∈L

ṽQl(K
′)−

∑
j∈S(K′)

ĉj

. (4.5)

doing so, we divide the area into cells. The value of the phenomenon is assumed to be

uniform over each cell.

We denote by Ri the set of cells that agent i reports. Ri contains ri, the actual cell

in which i is located (i.e., li ∈ ri). We assume that each agent has a location profile ψ,

which is a probability distribution over all cells (i.e., ψi(r) is the probability of agent

i to be in cell r). We assume that this information is common between the agent and

the center. Even though, location profile is time-dependent, for simplicity we ignore the

time dimension and assume that ψi(r) is the location profile at current time instance.

It is worthwhile to mention that knowing the location profile of users by adversaries,

is a common assumption in the literature on location privacy, e.g., [119, 120, 122].

This knowledge does not necessarily violate privacy since it incorporates possibly high

degree of uncertainty. The center can learn location profiles of users based on their

previous reports, some training traces of users which might be noisy or incomplete,

and/or background information about users.

4.3.2.1 No Privacy-Cost Trade-off

In the basic setting, agents have a preferred obfuscation level and a cost associated with

it. They are not willing to violate their preferred obfuscation level in any circumstances.
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PRIV STRICT is the generalized version of MQOPT which takes into account the ob-

fuscated locations of the agents. In this mechanism, ṽQl(si, Ri) =
∑

q∈Ql ṽq(si, Ri),

where ṽq(si, Ri) is a valuation function of query q that gives the expected valuation of a

measurement from agent i knowing that i is located in a cell in Ri.

h(K∗, Ri, x̂i) in payment scheme (4.5) is a function that calculates the valuation of x̂i

for the queries that will be answered by data provided by agent i. In order to guarantee

incentive compatibility with respect to reporting true measurements, h must satisfy the

following condition:

h̄(K∗, i) =
∑

l∈L(K∗,i)

ṽQl(si, Ri), (4.6)

where h̄(K∗, i) is the expected value of h(K∗, Ri, x̂i) before receiving x̂i from agent i.

Roughly speaking, the (risk neutral) agents do not have any incentive to not include

their actual location in the reported locations for two reasons: (I) it may reduce their

probability of getting selected by the center given that the agents do not have any

information on the possible queries, and (II) even if such an agent is selected by the

center, its utility depends on the quality of its measurement. A proper quality assessment

method can detect the irrelevance of the measurement to the announced location.

Incentive compatibility in both stages and individual rationality (in expectation)

of this mechanism still hold because we have only changed the valuation calculation

method. In other words, the approach we took in proving the incentive compatibility

and individual rationality of MQOPT can be used here. Note that πi does not depend

on the true types of other participants. This is crucial for incentive compatibility of the

mechanism.

4.3.2.2 Privacy-Cost Trade-off

A more interesting scenario is when the agents are willing to give up some of their privacy

in return for more payment. The agents’ cost functions increase with the increase in their

privacy leakage. The center needs to valuate the agents’ reports, for which it ideally needs

the exact locations of the agents. Therefore, the more precise the announced locations

are, the higher valuation they yield. This encourages the agents to trade their privacy

for more profit.

Agent i has a cost function ci : Γi → R, where Γi is the set of i’s obfuscation levels.

For simplicity, we assume that an obfuscation level γ indicates the number of cells in

the subregion reported by the corresponding agent. The only natural restriction that

we impose on the cost function is that it must be monotonically decreasing. That is,

ci(γ
(1)) < ci(γ

(2)) if γ(1) > γ(2).

We propose PRIV TRADE for truthfully eliciting cost and data reports from the

agents with the objective of maximizing the center’s utility. In the first stage, the center

selects a set of agents S(K∗), and for each agent i ∈ S(K∗) calculates an obfusca-

tion level Γ(K∗, i). In the second stage, each selected agent i, reports its measurement

and its region Ri such that |Ri| = Γ(K∗, i). For calculating the expected valuation

of a measurement from agent i for the queries at l, the center utilizes the function
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Mechanism 4 : PRIV TRADE

1. First Stage

(a) Each agent i reports cost function ci(.) and region R0
i corresponding to its

highest obfuscation level

(b) Center solves sensor assignment problem based on reported cost functions
and initial regions. We define

w(K,Q,R0,C) =
∑

i∈S(K)

 ∑
l∈L(K,i)

ṽQl
(
si,Γ(K, i), R0

i

)
− ĉi (Γ(K, i))

, (4.7)

where R0 and C denote the set of initial regions and the set of cost functions.
Γ(K, i) denotes the obfuscation level selected by K for agent i. Obfuscated
location of i will be in a subregion of R0

i according to γ.

Then center finds the best allocation scheme K∗:

K∗ = arg max
K∈K

w(K,Q,R0,C). (4.8)

2. Second Stage

(a) Each selected agent i ∈ S(K∗) reports its region Ri and its measurement x̂i
to center

(b) After observing actual outcomes for all r ∈ Ri, center makes following pay-
ment to each i:

πi = h(K∗, Ri, x̂i) + w−i(K
∗)− w(K∗−i), (4.9)

where w−i(K
∗) = w−i(K

∗, Q,R0,C) is center’s utility achieved by K∗ ex-
cluding agent i. w(K∗−i) = w(K∗−i, Q,R

0
−i,C−i), is center’s utility achieved

by K∗−i, which is the best allocation scheme when agent i is excluded from
the list of agents. h is similar to the function that is used in PRIV STRICT .

ṽQl
(
si, γ, R

0
i

)
=
∑

q∈Ql ṽq
(
si, γ, R

0
i

)
. Function ṽq

(
si, γ, R

0
i

)
gives the valuation of a

measurement from i for query q, knowing that i is located somewhere in R0
i and, if it

gets selected, it will report a subregion Ri ⊆ R0
i , where |Ri| = γ and li ∈ Ri. This

function is useful in scenarios where queries get some initial utility from knowing about

the neighborhood in which the measurements are taken, but more precise location in-

formation is needed for extra utility.

We prove that PRIV TRADE is individually rational and incentive compatible re-

garding reporting cost functions ci by showing that revealing true costs is the dominant

strategy of each agent. It is straightforward to prove incentive compatibility regarding

reporting measurements in the second stage provided that condition (4.6) holds.

Proposition 1. PRIV TRADE is individually rational.

Proof. We assume that agents are truthful. If agent i is not among the winners, its
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utility is zero. If i is one of the winners, then it’s expected utility is given by:

ūi =
∑

l∈L(K∗,i)

ṽQl
(
si,Γ(K∗, i), R0

i

)
+ w−i(K

∗)− w(K∗−i)− ci(Γ(K∗, i))

= w(K∗)− w(K∗−i).

Since i is a winner, the center’s utility when i participates is greater than when i is

excluded. Therefore, ūi = w(K∗) − w(K∗−i) > 0. This shows that the agents receive

non-negative utility, in expectation, by participating in the mechanism.

Proposition 2. PRIV TRADE is incentive compatible regarding reporting cost func-

tions.

Proof. Let K ′∗ denote the best allocation scheme when agent i misreports its cost func-

tion. Let γi and γ′i be the obfuscation levels assigned to agent i by K∗ and K ′∗, respec-

tively, if it wins. Let us denote by ūi and ū′i, the i’s expected utility when i is truthful

and when it is not truthful, respectively. We can distinguish four cases:

(I) Regardless of being truthful or not, i loses. In this case, the expected utility of i is

ūi = 0.

(II) i loses with untruthful cost function, but it would win with true cost function. In

this case, ū′i − ūi < 0.

(III) i wins with untruthful cost function, but it would lose with true cost function.

This happens only when ĉi(γ
′
i) < ci(γ

′
i). The expected utility of i is:

ū′i =
∑

l∈L(K′∗,i)

ṽQl(si, γ
′
i, R

0
i ) + w−i(K

′∗)− w(K∗−i)− ci(γ′i)

= w(K ′∗)− w(K∗−i) + ĉi(γ
′
i)− ci(γ′i)

= w(K ′′)− w(K∗−i),

where K ′′ is the non-optimal allocation that selects i when it is truthful. We have used

the fact that w(K ′∗) = w(K ′′) − ĉi(γ′i) + ci(γ
′
i). It follows from w(K∗−i) > w(K ′′) that

ū′i < 0.

(IV) Regardless of being truthful or not, i wins. When γ′i = γi, since the expected

utility does not depend on the reported costs, ū′i − ūi = 0. When γ′i 6= γi:

ū′i − ūi =
∑

l∈L(K′∗,i)

ṽQl(si, γ
′
i, R

0
i ) + w−i(K

′∗)− w(K∗−i)− ci(γ′i)

−
( ∑
l∈L(K∗,i)

ṽQl(si, γi, R
0
i ) + w−i(K

∗)− w(K∗−i)− ci(γi)
)

= w(K ′∗) + ĉi(γ
′
i)− ci(γ′i)− w(K∗)

= w(K ′′)− w(K∗),

where K ′′ is the non-optimal allocation that assigns γ′i to agent i when it is truthful.

Note that w(K ′′) = w(K ′∗) + ĉi(γ
′
i) − ci(γ′i) regardless of the relation between γ′i and
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γi and the relation between ĉi(γ
′
i) and ci(γ

′
i). It follows from w(K∗−i) > w(K ′′) that

ū′i − ūi < 0.

Therefore, agent i gains zero or negative utility in expectation by misreporting its

cost function.

The optimal allocation problem (4.8) can be formulated as a binary ILP. Assume

n sensors are available and L locations are queried. For each queried location l, by ml

queries, we define a binary variable Y l
i ∈ {0, 1} for each i = 1, . . . , n, which states if

sensor si is assigned to location l. For each sensor si, let Xi ∈ {0, 1} denote if si is

assigned to any location. Let Γji ∈ {0, 1} denote if obfuscation level γj is selected for si,

where j = 1, . . . , Ji. Note that we substitute Y l
i Γji by Z li,j ∈ {0, 1} to keep the linearity.

We denote by cji the cost of sensor si for obfuscation level γji . The optimal allocation

problem (4.8) can be expressed as the following binary ILP:

max

L∑
l=1

n∑
i=1

Ji∑
j=1

Z li,j ṽ
′
Ql(si, γ

j
i , R

0
i )−

n∑
i=1

Ji∑
j=1

Γji c
j
i ,

s.t.

Y l
i ≤ Xi ∀i, l,

∑n
i=1 Y

l
i ≤ 1 ∀l,

∑Ji
j=1 Γji ≤ Xi ∀i,

Z li,j ≤ Y l
i , Z li,j ≤ Γji , Z li,j ≥ Y l

i + Γji − 1,

∀i, l, j = 1, . . . , Ji.

(4.10)

In the above formula, ṽ′
Ql

(si, γ
j
i , R

0
i ) is given by:

ṽ′Ql(si, γ
j
i , R

0
i ) =

{
ṽQl(si, γ

j
i , R

0
i ) if ṽQl(si, γ

j
i , R

0
i ) > 0

−1 otherwise.

4.4 Evaluation

We conducted extensive simulations using synthetic datasets to evaluate the performance

of our mechanisms.

4.4.1 Setup

We use random waypoint model [57] to simulate the mobility of agents in a region of

20×20 grid. In this model, each agent moves from its current location with a speed

randomly selected between zero and a sensor-specific maximum speed. The direction of

the movement is either up, down, left, or right, and is randomly selected. The sensors

are randomly spread in the region. The maximum speed of each sensor is set randomly

to 4 or 5. We consider a simulation period of 50 time slots in all the experiments. A

two-dimensional function is used to generate real data for each grid in the region. The

measurement of a sensor located at a specific grid is simulated by adding to its real

data a noise generated randomly from a Gaussian distribution N (µ, σ2), with µ = 0 and

σ = 1.
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We define the following function for computing the quality of a measurement from

sensor si for query q, before receiving the measurement from the sensor.

θ̄(li, lq) =

{
1− |ls−lq |dmax

if |li − lq| ≤ dmax,
0 otherwise.

(4.11)

In the above formula, li is the location of si, lq is the queries location, and dmax is the

maximum distance at which the agents can be considered to provide data. According

to this function, the quality of a measurement linearly depends on the distance of the

sensor and the queried location. Note that in (4.11) we assume that the agents will

provide truthful measurements and the noise in the measurements is ignored.

In the experiments for privacy oblivious agents, we use the following as the valuation

function of every query q:

v̄q(si) =

{
Bqθq,i θmin ≤ θq,i ≤ 1

0 θq,i < θmin,
(4.12)

where Bq is the query budget, θq,i = θ̄(li, lq), and θmin is the minimum acceptable quality.

Point query locations are selected randomly in the simulation region. For all the

queries, we set θmin = 0.2, Bq = 10, and dmax = 5.

4.4.2 Privacy Oblivious Agents

In the following experiments we compare the performance of MQOPT and MQAPPROX

regarding average utility and payment.

We use the following function to compute the quality of a measurement x̂i reported

by agent i knowing that the true value is x:

θ(x, x̂i) =

{
(1− |x−x̂i|5 ) if |x− x̂i| ≤ 5,

0 otherwise.
(4.13)

According to this function the quality of a reported measurement decreases linearly as

its difference with the ground truth value increases (up to a threshold of 5). Then, the

formula of vq(x, x̂i, si) is similar to (4.12), except that the quality is given by (4.13).

Agents (sensors) are initially placed at randomly selected grids in the simulation region.

A cost value uniformly randomly picked from the interval [5, 15] is assigned to each

agent.

Varying the number of agents. Figure 4.1(a) and 4.1(b) show the average utility

achieved by MQOPT and MQAPPROX and the payment issued by these mechanisms as

the number of agents increases. It can be seen that MQAPPROX results in more utility

compared to MQOPT in most cases. The obvious reason, as is seen in 4.1(b), is that

MQOPT pays more to the agents compared to MQAPPROX . It can also be noticed

that the utility difference between these mechanisms decreases as the number of agents

increases. This is due to the fact that, while the number of queries is fixed, the optimal

allocation achieves higher valuation as the number of agents increases. Figure 4.1(c)
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Figure 4.1: (a) Average utility, (b) Average payment, (c) Average overpayment, by
MQOPT and MQAPPROX for different number of sensors (agents). 50 queries exist in
each time slot. MQAPPROX achieves more utility because it pays less to the agents.

shows the average overpayment of the two mechanisms. Overpayment is the amount

paid to the winners in excess of their announced costs.

Varying the number of queries. The average utility and payment resulting

from MQOPT and MQAPPROX are compared in Figure 4.2(a) and 4.2(b). It can be

noted that the utility and payment are inversely related. Moreover, both utility and

payment go up as the number of queries increases. The reason is that more queries

imply more budget. In addition, having fixed number of agents, with an increasing

number of queries, the measurements taken from agents can be shared by more queries,

which results in more utility. Figure 4.2(c) shows that MQOPT overpays the winners

more than MQAPPROX when less than 150 queries exists. For more than 150 queries,

the opposite behavior is observed.

4.4.3 Privacy Conscious Agents

In the following experiments, we compare the performance of PRIV TRADE regarding

average utility acquired and average payment issued in three different settings: (I) when

agents are willing to trade their privacy (Trade-off); (II) when agents are privacy con-

scious but are not willing to trade their privacy as in PRIV STRICT (No trade-off); (III)
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Figure 4.2: (a) Average utility, (b) Average payment, (c) Average overpayment, by
MQOPT and MQAPPROX for different number of queries. 50 sensors exist in the
simulation region. MQOPT achieves more utility and it pays less as we increase the
number of queries.

when agents reveal their exact location as in MQOPT (No obfuscation).

We consider three levels of privacy sensitivity for privacy conscious agents, namely,

low, moderate, and high. The agents are split in three groups of equal size. One sensitivity

level is assigned to each group. The initial size of the obfuscated region (i.e., the highest

obfuscation level) is 4, 6, and 9 cells respectively for low, moderate, and high sensitivity

levels. For computational reasons, we restrict the agents to report only rectangular

regions. The initial obfuscated region is selected randomly. However, it contains the

agent’s location. For each agent i a base cost cbi is randomly considered from the interval

[5, 15]. When there is no obfuscation, ci = cbi . With privacy conscious agents, the

cost corresponding to the highest obfuscation level is calculated as chi = αcbi , where

α = 1
3 ,

1
4 ,

1
5 respectively for low, moderate, and high sensitivity levels. The cost of the

lowest obfuscation level (i.e., no obfuscation) is computed as cli = 2chi . The cost linearly

increases between these two values as the obfuscation level decreases. Therefore, the

following cost function is assigned to agent i:

ci(γ) =
chi − cli
|R0

i |
γ + cli. (4.14)
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Figure 4.3: (a) Average utility, (b) Average payment, by PRIV TRADE with different
agent privacy settings for different number of sensors (agents). 50 queries exist in each
time slot.

The expected valuation of a measurement from agent i for queries at location l when

the size of its reported obfuscated region is γ, is given by the following function:

ṽQl(si, γ, R
0
i ) =

(
1 +
|R0

i | − γ
|R0

i | − 1

) ∑
q∈Ql

∑
r∈R0

i

P (r|R0
i )v̄q(si, r), (4.15)

where P (r|R0
i ) is the probability of si being in cell r knowing that it is somewhere in

region R0
i , and v̄q(si, r) gives the expected valuation of si assuming it is located in cell

r.

We use h(K∗, Ri, x̂i) = ṽQl(si, |Ri|, R0
i ) assuming that reported values are truthful.

Using this function, we ignore the value of x̂i and work with the expected quality of

sensor readings from i. If x̂i is totally ignored, the mechanism cannot be guaranteed to

be incentive compatible for reporting true measurements. In order to alleviate this in

practice, we can either use a function that considers reported values, or indirectly take

into account the reported values by using them to update the reputation of the agents.

Varying the number of agents. The average achieved utility and average payment

by PRIV TRADE as the number of agents increases from 20 to 50 is compared for three

different settings. The results are shown in Figure 4.3(a) and 4.3(b). The number of

queries is set to 50 for this experiment. When the agents are willing to trade their

privacy for more benefit, a higher utility for the center is achieved compared to when

the agents are privacy conscious but not willing to trade their privacy. The payment

to the winners follows the same behavior. However, when the agents reveal their exact

location, even higher utility is acquired and more payment is issued. This is expected,

as knowing the exact locations results in higher valuations for sensor readings.

Varying the number of queries. Figure 4.4(a) and 4.4(b) show the average

achieved utility and average payment by PRIV TRADE as the number of queries in-

creases from 20 to 50. The number of agents is set to 50. Similarly to the experiment for

varying number of agents, higher utility is achieved when the agents are privacy oblivi-

ous. When the agents trade their privacy, the utility of center is higher than when they
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Figure 4.4: (a) Average utility, (b) Average payment, by PRIV TRADE with different
agent privacy settings for different number of queries. 50 sensors exist in the simulation
region.

are strict on revealing their private information. It can also be seen that as we increase

the number of queries, the utility and payment increases. This is due to the fact that

more queries result in firstly, more budget and secondly, more senor reading sharing.

4.5 Conclusion

In this chapter we proposed incentive compatible and individually rational mechanisms

for eliciting truthful information from agents in participatory sensing. In our scenario,

multiple applications request sensor measurements at several locations. The valuation

functions for valuating the quality of measurements are provided by the applications.

The agents are compensated for the measurements that they provide. We considered

two cases where agents are privacy oblivious and privacy conscious. When agents are

privacy oblivious, our mechanisms incentivize them to truthfully report their costs and

measurements. We also provided an incentive compatible mechanism for enabling agents

to trade privacy for monetary benefit.
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Chapter 5
Quality Assessment of Sensor Data Based
on Frequent Patterns

5.1 Introduction

One of the most important tasks of sensor networks (SN), which include participatory

sensing systems, is to detect occurrences of interesting events in the monitored environ-

ment (e.g., forest fire, chemical spill, leak of poisonous gases). Such events usually span

some geographic region and involve simultaneous changes in values of several sensors.

However, data measured by SN is often affected by errors, i.e., noisy (incorrect) values

resulting from faults of sensors caused by resource constraints (energy and bandwidth),

calibration problems, or exposure to harsh environmental conditions (e.g., floods). There-

fore, ensuring reliability of sensor data is a fundamental task for delivering actionable

knowledge for a proper decision-making.

We investigate the problem of assessing quality of a sensor value (tested value) in

the presence of events and errors when the sensors are stationary. A usual approach is

to express the quality as a deviation of the tested value from a reference value (a normal

value in SN data). Defining such a reference value is difficult for SN for the following

reasons: (I) interaction between events and errors, where both of them may exhibit

similar sensor values that can be considered as outliers with respect to the normal state

of SN [143] and (II) differing characteristics of the monitored events, where they can

have differing shapes and corresponding magnitude (e.g., diffusion events, where the

magnitude of the observed event decreases with distance from its source [87]). Figure

5.1 presents a contour map of an example diffusion event. The event is additionally

displaced to the right (east) of the source (e.g., a poisonous cloud that is displaced by

westward wind).

State of the art approaches to quality assessment aim at defining the reference value

in terms of a context consisting of values of spatially close sensors that are correlated with

83
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Figure 5.1: A contour map of a diffusion event (the magnitude of the observed event
decreases with distance from its source). The event is additionally displaced to the left
of the source (e.g., a poisonous cloud that is displaced by westward wind).

the tested value (e.g., [30, 76, 137]). This is based on the assumption that events, unlike

errors, tend to involve spatio-temporal correlations with neighboring sensors, where the

spatial correlations are stronger than the temporal [143]. Spatial correlations may result

from dense sensor deployments that may cause spatially proximate sensor values to be

correlated when they capture the same event [132]. Temporal correlations occur when

consecutive sensor observations are related by referring to an evolution of the same event

(e.g., tracking spread of a leak of a poisonous gas cloud over time). However, the state

of the art approaches trade accuracy for simplicity and use a fixed context consisting

of all values of a fixed neighborhood that occur simultaneously (e.g., all values within

a circular neighborhood of radius r) and define the reference value as the average of

the context [75, 76, 143]. Clearly, such a fixed context is only similar to the tested

value if they both are subject to a single homogeneous event. Therefore, the state of

the art approaches for quality assessment in SN suffer from the choice of inappropriate

neighborhood and fail in many practical cases by under or overestimating the reference

values [143].

Example 5.1. Figure 5.2 illustrates the problem of using fixed neighborhood for quality

assessment for a set of six sensors S = {s1, s2, . . . , s6} that are located in a square region.

The four squares present snapshots of the network corresponding to four different events

(e.g., a movement of a pollution cloud or an oil spill region). The black dots represent

the sensors, the dashed lines around the sensors represent their sensing ranges. The

solid lines of differing width with associated values represent contour lines (magnitude

of the event) of contour maps of the corresponding events. Let the task be to compute

the quality of the current value of sensor s3 (tested value). We use the average-based

method (AB) that computes the quality as the difference between the tested value and

the reference value defined as the average of the values of the sensors in a fixed circular
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Figure 5.2: A set of six sensors {s1, s2, . . . , s6} that are located in a square region. The
four squares present snapshots of the sensor network corresponding to four differing
events (e.g., a movement of a pollution cloud or an oil spill region). The black dots
represent the sensors, the dashed lines around the sensors represent their sensing ranges.
The solid lines of differing width with associated values represent contour lines of contour
maps of the corresponding events.

neighborhood of radius r of sensor s3. We assume that the neighborhood contains all

other sensors from S. Then the presence of the events will imply the following problems

while using AB for computing quality of s3.

Event One presents a case where s3 lies outside of the event and three against two of

its neighbors lie inside the event with value equal to 100. So the majority of neighbors

are inside of the event and AB would give small quality to s3.

Event Two presents a case where s3 lies inside of the event with value equal to 100 and

three against two of its neighbors lie outside of the event. So this case is complementary

to the case in Event One.

Event Three presents a case where the event has two contour lines corresponding to

values 200 and 100 respectively. s3 and s4 lie inside of the value 200 and the rest of the

four sensors lie inside the value 100. Thus, the majority of sensors in region 100 would

imply a low quality value of s3 using AB.

Finally, Event Four presents a case where the event consists of two separate regions,

one with value 100 and the other with value 300. Then clearly, four of the neighbors of

s3 lie inside the region with value 100. Thus, again AB would assume the value of s3

deviates from the majority.

5.1.1 Overview of the Approach

We present the first pattern-wise method (PW) for quality assessment of sensor data

that addresses the limitations of the state of the art approaches by departing from the

idea of a fixed neighborhood. We take a realistic approach and assume that there does

not exist a correct training set of a normal behavior for the neighborhood. Thus, the

neighborhood can also contain faulty values. We proceed as follows: (I) we consider a

variable neighborhood defined as an arbitrary subset of spatially close sensors in order to

deal with arbitrary events, and (II) we define the context as a frequent spatial pattern,

consisting of values of the variable neighborhood, that frequently co-occur with the tested
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value in the stream of sensor values in order to deal with faulty neighborhood values

and overlapping events.

We define the quality as the belief (probability) that the tested value is correct given

selected features of a frequent pattern consisting of the context and the tested value.

We compute the quality of a given sensor value (tested value) as the output of the

logistic regression, where the input variables consist of features of the pattern consisting

of the context and the tested value. We use the logistic regression to combine the features

such that the output is a probability value. Clearly, in our case, the output of the logistic

regression corresponds to the probability of the binary random variable that the value is

correct given the input variables [7]. We obtain the parameters of the logistic regression

using a user evaluation, where we ask assessors to assess quality for a sample of the

feature space that is subsequently used for learning the parameters.

Given the parameters of the logistic regression the algorithm proceeds as follows:

1. We use itemset mining to find, in the sensor data stream seen so far, a frequent

correlated pattern, consisting of the tested value and a context, that maximizes

the logistic function.

2. We compute quality using the following features of the pattern:

(a) The relative frequency of the pattern.

(b) The conditional probability of the tested value given the context.

(c) The relative size of the pattern with respect to the number of streams.

The following example illustrates the quality computation process.

Example 5.2. Consider a sensor network consisting of a set of four sensors S =

{s1, s2, s3, s4} monitoring daily occurrences of rainfall in corresponding four locations,

where the value s
(t)
i = 1/0 denotes a presence/absence of rainfall on day t in sensor

si. Consider the task to compute the quality of value s
(6)
0 = 1. Figure 5.3 shows the

corresponding sensor data streams.

Using frequent itemset mining we discover that, for s
(t)
0 = 1,

[
s

(t)
1 = 0, s

(t)
3 = 1

]T
is

the frequent correlated context (the variable neighborhood is {s1, s3}) that maximizes

the logistic function given the parameters, where:

1. the relative frequency of the pattern y1 = 2
6 .

2. the conditional probability

y2 = P
(
s

(t)
0 = 1|s(t)

1 = 0, s
(t)
3 = 1

)
=

2

3
.

3. the relative size of the pattern y3 = 3
4 .

Given the parameters of the logistic regression model [β0 = −6, β1 = 5, β2 = 6, β3 = 3]

we compute the quality as T (6)
0 = 1

1+e−(β0+β1∗y1+β2∗y2+β3∗y3)
= 0.87.
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Figure 5.3: Quality computation for sensor value s
(6)
0 = 1 (in the square) in the sensor

multi-stream S = {s1, s2, s3, s4}, where s
(t)
i = 1/0 means an occurrence/absence of

rainfall on day t in sensor si. The circles around some values denote the occurrences of the
frequent correlated context of the value in the square. The vertical dashed line separates
processed (to the left) from the unprocessed multi-values. The backward arrows from the
value in the square to the previous occurrences of the same value point to the projected
multi-stream (in rounded rectangles).

Thus, the computed quality value given the values of the features [y1, y2, y3] reflects

user beliefs, captured in the user evaluation, that the value is correct given the features

of the frequent pattern. Please note that in most practical applications, given a sensor

data stream, instead of computing quality for a single value, we will be interested in

obtaining a corresponding quality stream.

Clearly, the appeal of using the frequent pattern approach to finding the context

is as follows: (I) the frequent patterns capture differing cases of recurrent events (e.g.,

recurrent rainfall patterns associated with yearly cycle of recurring configurations of at-

mospheric fronts [47, 48]) as well as a “recurring normal values” of SN, and (II) frequent

patterns filter out noisy values. Furthermore, note that the method also takes an ad-

vantage of temporal correlations implicitly by discovering the frequent patterns in the

segment of the stream that precedes the tested value.

5.1.2 Motivating Application

The pattern-wise quality assessment of sensor data was inspired by project OpenIoT [1]

as part of the corresponding Quality-Module (QM). OpenIoT develops an open source

cloud-enabled middle-ware for Internet of Things (IoT). Figure 5.4 presents the main

components of OpenIoT architecture that are as follows:

1. GSN (Global Sensor Networks): is a sensor middle-ware that obtains sensor data

streams from sensors [5].

2. LSM (Linked Stream Middleware): is a cloud databases that stores sensor data

streams from GSN [72].
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Figure 5.4: The pattern-wise quality assessment approach as part of the quality module
in the OpenIoT platform.

3. Scheduler (SCH): processes all the requests (queries) and ensures their proper

access to the resources (e.g., data streams) that they require.

4. Service Delivery and Utility Manager (SDUM): performs two tasks: (I) it combines

data streams in order to deliver the requested services, and (II) it acts as a service

metering facility, which keeps track of utility metrics for each individual service.

5. Request definition: provides a graphical user interface for on-the-fly specification

of service requests.

6. Request presentation: provides a graphical user interface that enables visualization

of the outputs of services.

QM is an independent module in OpenIoT. It computes quality in a centralized way

by obtaining the sensor data streams from LSM and storing the corresponding quality

streams back in LSM. There are the following ways of computing the quality stream

given available sensor data streams in LSM:

1. On-line (immediate): while storing the sensor data streams to LSM. The disadvan-

tage of this approach is a heavy overloading of QM, LSM and the communication

link between them.

2. Off-line on demand: when a query needs recent quality streams. This approach has

the same disadvantage as the on-line approach. Moreover, quality computation in

this case is a blocking operation. The advantage of this approach is that LSM is

not populated with quality streams that may never be used.

3. Off-line periodically (deferred): periodically after the sensor data streams have

been stored in LSM.

We adopt the off-line solution combined with caching mechanism to optimize the

computational and storage resources. QM obtains the data from LSM and periodically

outputs the corresponding quality streams back to LSM (stored in a separate entity that
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references the corresponding sensor data stream). SCH and SDUM communicates with

QM to process queries. In particular, SCH may trigger an on-demand computation of a

quality stream if this is necessary for a given query (e.g., the query specifies a minimum

quality threshold for a sensor data stream from a given area), while SDUM monitors the

performance of QM and triggers periodic computation of quality streams.

5.1.3 Contributions

Our contributions in this chapter are are the following: (I) we present the first method

for quality assessment of sensor data that addresses the limitations of the state of the

art approaches by departing from the idea of a fixed circular neighborhood. Our method

is the first pattern-wise method that defines the context as a spatial frequent pattern

consisting of values of the variable neighborhood that frequently co-occurs with the

tested value in the stream of sensor values; and (II) we use the logistic regression to

define quality in terms of parameters obtained from a user evaluation.

The rest of this chapter is organized as follows. Section 5.2 presents the theoretical

foundations of our approach. Section 5.3 presents the pattern-wise solution. In Section

5.4 we present experiments for evaluating the proposed approach. We review the related

work in Section 5.5. Finally we conclude the chapter in Section 5.6.

5.2 Theoretical Foundations

In this section we present the notation and review some concepts that are necessary in

order to explain our framework.

5.2.1 Notation

We use subscript i to refer to the i-th sensor data stream. We assume that the streams are

quantized andAi = {ai,1, ai,2, . . . , ai,mi} is an alphabet in stream i. S =
{
s1, s2, . . . , s|S|

}
is a sensor multi-stream defined as a set of input streams of length n. The i-th stream

(i-th attribute sequence) is defined as si =
[
s

(1)
i , s

(2)
i , . . . , s

(n)
i

]
. Every stream tuple

(stream element) has three attributes: (I) timestamp s
(t)
i .timestamp = t, where t ∈

{1, 2, . . .}; (II) stream identifier s
(t)
i .stream = i; and (III) value denoted s

(t)
i .value,

where s
(t)
i .value ∈ Ai. For simplicity we just use s

(t)
i to mean s

(t)
i .value. si = {sj |i 6= j}

is the set of complementary streams of stream si. S(t) =
[
s

(t)
1 , s

(t)
2 , s

(t)
3

]T
is a multi-

value that is a simultaneous occurrence of symbols s
(t)
1 , s

(t)
2 , s

(t)
3 for a given time point

t. [e1, e2, . . . , em] is a sequence of elements. {e1, e2, . . . , em} is a set of elements. Tk =[
T (ts)
k , T (ts+1)

k , . . . , T (te)
k

]
is the quality stream of the k-th sensor for the time window

[ts, te], where ts is the start time and te is the end time. T (t)
k is the quality score for

sensor k at time t, where T (t)
k ∈ [0, 1], and 0 and 1 are the lowest and the highest quality

scores.
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5.2.2 System Model

Each sensor can sense the value of the phenomenon in its sensing range (measuring

range). The sensing range of a sensor si is a circle centered at itself with radius ri [140].

An event E is a subset of R2 such that readings of the sensors in E are different from

the sensors that are not in E [30]. A faulty sensor can be considered as a special event

which contains only one sensor. S is the set of all sensors. We also use S to denote the

set of corresponding sensor data streams (multi-stream).

Ni is a neighborhood of a sensor si defined as a bounded closed set of R2 that

contains sensor si and some number of other sensors. As an example of Ni consider a

closed disk centered at si with radius r. We can distinguish two types of events: atomic

events and composite events. An atomic event can be detected merely based on the

observation of one attribute. For example, if the sensed temperature value exceeds a

predefined threshold, an atomic event of “high temperature” is detected. A composite

event is the combination of different atomic events. For example, the composite event

fire may be defined as the combination of the temperature and light. The composite

event fire occurs only when both the temperature and the light exceed some predefined

thresholds. For clarity of the presentation we consider only atomic spatial events in this

chapter. We do not make any further assumption on the structure of the network.

5.2.3 Itemset Mining

Let A = {a1, a2, . . . , a|A|} be a set of items (alphabet). A subset I ⊆ A, where I =

{a1, a2,. . . , a|I|} is called an itemset or element and is also denoted by (a1, a2,. . . , a|I|),

where |I| denotes the size of the set. Thus, I is a subitemset of A and A is the su-

peritemset of I. Given a collection of itemsets D = {I(1), I(2), . . . , I(|D|)} (a multiset

of sequences) the support (frequency) of an itemsets I, denoted by supD(I), is defined

as the number of itemsets I(i) ∈ D that contain I as a subset. The relative support

(relative frequency) rsupD(I) = supD(I)
|D| is the fraction of itemsets that contain I as a

subset.

Given a relative support threshold minRelSup an itemset I is called a frequent item-

set if rsupD(I) ≥ minRelSup. The problem of frequent itemset mining is to find all

frequent itemsets in D given minRelSup. The support has the downward-closure prop-

erty (also called apriori or anti-monotonic property), meaning that supD(I) ≥ supD(I ′)
if and only if I ⊆ I ′. Thus, for a frequent itemset, all its subsets are also frequent and

thus for an infrequent itemset, all its supersets must also be infrequent. An itemset I is

called a frequent closed itemset (FCI) if none of its frequent superitemsets has the same

support. Thus, mining closed itemset reduces the number of discovered patterns and

provides a more compact representation. Several efficient algorithms, such as [80, 101],

exist for finding frequent closed itemsets.

Table 5.1 presents an example collection of itemsets, where for minRelSup = 0.5,

I = (a1, a2) is a frequent itemset, where rsupD(I) = 0.5 and it is contained in itemsets

0 and 3.
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id itemsets

a1 a2 a3 a4

0 1 1 0 0
1 0 1 1 0
2 0 0 0 1
3 1 1 1 0

Table 5.1: A collection of itemsets, where 1/0 means the presence/absence of items.

Given an itemset I, an itemset rule or itemset association rule is defined as an

implication of the form X ⇒ Y where X, Y ⊆ I and X ∩ Y = ∅. The sets of itemsets

X and Y are called antecedent (left-hand-side or LHS) and consequent (right-hand-side

or RHS) of the rule respectively. The confidence (conditional probability) of a rule is

defined as

confD(X ⇒ Y ) =
supD(X ∪ Y )

supD(X)
= P (Y |X),

where X ∪ Y means that both X and Y are present, i.e., supD(X ∪ Y ) = supD(I). For

example, in Figure 5.3 rule (s3, s2)⇒ s0 has confidence equal to 2
3 .

Although mining closed itemsets reduces the number of discovered patterns, that

number may still be too large for an appropriately low value of minRelSup. In gen-

eral given two itemsets X and Y there are the following three correlation relationships

between them:

1. P (Y |X) = P (Y ), then Y and X are independent

2. P (Y |X) > P (Y ), then Y is positively dependent on X, and X ⇒ Y is a positive

association rule

3. P (Y |X) < P (Y ), then Y is negatively dependent on X and X ⇒ ¬Y is a negative

association rule (or ¬Y is positively dependent on X)

A high value of P (Y |X) alone is not enough to determine significance of X ⇒ Y

because P (X|Y ) can be small. We can fix the problem by requiring that P (X|Y ) is

comparable to P (Y |X). This observation leads to all-confidence rule-wise significance

measure [98] defined as follows:

allConfidence(X ⇒ Y ) = min{P (Y |X), P (X|Y )}. (5.1)

Thus, (5.1) leverages the rank of rules where the antecedent and consequent occur ex-

clusively together.

All-confidence can be generalized to itemset-wise significance measure as follows

allConfidence(I) = min
ai∈I

{
sup(I)

sup(ai)

}
, (5.2)

where the right hand side of (5.2) computes the confidence of the least favorable rule

(when |X| = 1). Thus (5.2) leverages the rank of items that frequently co-occur. Clearly,
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all-confidence has the downward-closure property meaning that allConfidence(I) ≥
allConfidence(I ′) if and only if I ⊆ I ′. Thus, for a significant itemset, all its subsets

are also significant and thus for an insignificant itemset, all its supersets must also be

insignificant.

5.2.4 Average-based Quality Model (AB)

In the baseline solution ([75, 76]) the quality score of value s
(k)
t is expressed as a p-value

as follows:

T (t)
k = P

(
Z > Z

(
s

(t)
k

))
,

where:

Z
(
s

(t)
k

)
=

√
n
(
s

(t)
k −E

(
N (t)
k

))
√

Var
(
N (t)
k

) ,

E
(
N (t)
k

)
=

1∣∣∣N (t)
k

∣∣∣
∑

value∈N (t)
k

value

and

Var
(
N (t)
k

)
=

∑
value∈N (t)

k

(
value−E

(
N (t)
k

))2

(∣∣∣N (t)
k

∣∣∣− 1
) ,

where N (t)
k is the collection of values (context) of a fixed circular neighborhood of sensor

sk of radius r.

5.2.5 Problem Definition

The general problem of quality assessment of sensor data stream sk is to compute the

quality sequence (stream) Tk =
[
T (ts)
k , T (ts+1)

k , . . . , T (te)
k

]
, where the following input is

given:

• an input collection of sensor data streams S =
{
s1, s2, . . . , s|S|

}
, where

si =
[
s

(ts)
i , s

(ts+1)
i , . . . , s

(te)
i

]
• ts and te are the start and end timestamps of the multi-stream, which are not

necessarily the same for all streams

• sensor identifier k

In the remainder of the chapter, we present our approach for calculating T (t)
k , the

quality score of stream sk at time t.
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5.3 Pattern-wise Quality Assessment

In this section we provide details of the algorithm for pattern-wise quality assessment of

sensor data (PW).

We aim at discovering the real correlations between neighbors and the tested value.

For clarity of the presentation we assume that all the streams are over the same discrete

alphabetA = {0, 1, |A| − 1}. However, for the purpose of itemset mining, to comply with

the set semantics we differentiate between symbols of A in different streams leading to

stream-wise alphabets Ai = {0i, 1i, (|Ai| − 1)i}. For example, given the current multi-

value on the streams S(t) =
[
s

(t)
0 = 0, s

(t)
1 = 1, s

(t)
2 = 1, . . .

]T
, we write it alternatively

as [00, 11, 12, . . .]
T . We represent the corresponding itemset as I(t) = {00, 11, 12, . . .}T ,

where I(t)
i is the set of values of the complementary streams of sensor si. Let I∗i ⊆ I

(t)
i

be a subset of correlated stream values.

The main idea of our approach of assessing quality of a value s
(t)
k is to find the

most correlated subset of values on other streams I∗k (the context), as observed from

the beginning of the stream, and express the quality in terms of conditional probability

P
(
s

(t)
k |I

∗
k

)
. However, using P

(
s

(t)
k |I

∗
k

)
alone, for computing quality, is not meaningful

since it does not consider other important features of the pattern such as the relative

support and the context length. Therefore, we consider quality in terms of the following

features of the pattern from the [0, 1] interval:

1. y1 = rsup
({
s

(t)
k , I

∗
k

})
, the relative support, that gives more importance to more

frequent itemsets.

2. y2 = P
(
s

(t)
k |I

∗
k

)
, the conditional probability of the tested value given the context,

that gives more importance to correlated items.

3. y3 =
|I∗k |+1

|S| , the relative pattern size with respect to the number of streams, that

gives more importance to larger itemsets.

Given the feature vector y = [y1, y2, y3], we combine the features using the logistic

function, [7], as follows:

T (t)
k (y) =

1

1 + e−(β0+β1y1+β2y2+β3y3)
, (5.3)

where [β0, β1, β2, β3] are predefined optimal parameters of the logistic regression that are

learned from a user evaluation. Given the parameters [β0, β1, β2, β3] we clearly select an

itemset with such features y that maximizes the following score

β(y) = β0 + β1y1 + β2y2 + β3y3. (5.4)

Given the following input:

• minRelSup is the minimum relative support threshold for itemsets.

• minAllConf is the minimum all-confidence threshold for itemsets.
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• [β0, β1, β2, β3] that is learned from a user evaluation.

• s(t)
k is a stream value in stream k at time point t.

The algorithm proceeds as follows:

1. Mine frequent closed itemsets, where:

(a) Grow only itemsets for sk equal to s
(t)
k (a projection of sk on s

(t)
k ).

(b) Grow only itemsets Ik if

allConfidence
({
s

(t)
k , Ik

})
> minAllConf.

2. Find an itemset I∗k such that

I∗k = arg max
β(y)

{
I∗k ⊆ I

(t)
k

}
, (5.5)

where:

y1 = rsup
({
s

(t)
k , I

∗
k

})
, y1 > minRelSup,

y2 = P
(
s

(t)
k |I

∗
k

)
=
sup

({
s

(t)
k , I

∗
k

})
sup

(
I∗k
) ,

y3 =
|I∗k |+ 1

|S|
,

β(y) = β0 + β1y1 + β2y2 + β3y3.

3. Return T (t)
k = 1

1+e−β(y)
.

Clearly, the time complexity of the algorithm is dominated by mining the frequent

itemsets that can be computationally expensive at low support thresholds. Therefore,

we apply several optimization techniques that substantially cut the search space for

itemsets and make the method applicable for a large number of sensor data streams. In

particular, we apply the following techniques:

1. We operate at relative high range of minRelSup in order to ensure that the dis-

covered context is believed to be reliable as indicated in the user evaluation.

2. We run the frequent pattern mining algorithm on the subset of the input sequence

corresponding to a projection of the sequence on the tested value.

3. We filter out insignificant itemsets before we extend them to supersets using the

downward-closure property of all-confidence.

4. We filter out itemset based on the rank found so far according to formula (5.4).
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5.4 Experiments

We evaluated our pattern-wise quality assessment using both generated and real data.

The experiments were performed in Java programming language on a 2.70GHz dual core

i7-2620M CPU machine running Ubuntu with 8GB of memory.

5.4.1 Parameters of the Logistic Function

Since quality is a subjective concept, we determined [β0, β1, β2, β3], the parameter vector

of our logistic regression model, by conducting a user evaluation as follows: (I) we

generated an appropriate sample of the feature space by creating 3000 feature vector

reflecting combinations of values for y1, y2, y3; (II) we asked four human assessors to

assign a quality value to each feature vector; and (III) we averaged quality scores form

the four human assessors to obtain a single quality score per feature vector.

Given the user evaluation, we learned the parameter vector using function glm from

the free software environment for statistical computing and graphics R [2]. We obtained

the following parameter vector [β0 = −6.86, β1 = 6.64, β2 = 5.68, β3 = 0.157], that is

used throughout the experiments.

Correctness and meaning of the learned parameters can be verified. Recall, that

the quality value T (y) corresponds to the probability that the output of the logistic

regression is one given the input parameters y [7]. Then clearly the odds of T (y) = 1 is

equal to
T (y)

1− T (y)
= eβ(y), (5.6)

and the odds ratio (OR) between odds when y1 = a+ ∆ and odds when y1 = a for fixed

y2 and y3 can be expressed as follows:

OR =
odds of quality for y1 = a+ ∆

odds of quality for y1 = a

=
eβ0+β1(a+∆)+β2y2+β3y3

eβ0+β1a+β2y2+β3y3
= eβ1∆.

Thus, eβ1∆ is the change in the odds of quality when y1 is increased by ∆ and y2 and y3

are fixed. Clearly, using this reasoning we can make sure that for a given ∆ the increase

in OR is appropriate.

5.4.2 Methodology

Another implication of the fact that quality of a sensor value (in the presence of errors

and events) is a subjective measure is the lack of a baseline stream with quality assess-

ment (ground truth). To overcome this difficulty, given a stream sk, we constructed a

generated baseline stream ŝk and a generated baseline quality stream T̂k using the follow-

ing approach:

1. We assumed that sk is clean (either generated or real data stream).

2. We generated ŝk by injecting errors and events into sk.
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3. We generated T̂k by assigning a quality score for the data points of ŝk given the

full knowledge of the injected distortions.

In particular, we evaluated the quality of each data point ŝ
(t)
k , depending on whether ŝ

(t)
k

contains an error or event, as follows:

1. Clean: i.e., s
(t)
k = ŝ

(t)
k . Then clearly T̂ (t)

k = 1.

2. Error: i.e., s
(t)
k 6= ŝ

(t)
k . Then T̂ (t)

k reflects the difference between s
(t)
k and ŝ

(t)
k .

3. Event: i.e., s
(t)
k 6= ŝ

(t)
k . Then clearly T̂ (t)

k = 1.

4. Error and event: then T̂ (t)
k reflects the difference between s

(t)
k given the event and

ŝ
(t)
k .

In cases 2 and 4 the contribution of the difference to the decrease in quality is based

on a user evaluation, where the assessors were asked to evaluate the decrease in quality

given the amount of noise injected into the values.

Given the generated baseline quality stream T̂k we used the average-based method

(AB) as a baseline method to compare with the pattern-wise method (PW). For this

purpose we used RMSE (Root Mean Squared Error) expressed as follows:

RMSE (Tk) =

√√√√ 1

n

|Tk|∑
t=1

(
T̂ (t)
k − T (t)

k

)2
, (5.7)

where T̂k is the generated ground truth quality stream and Tk is the tested quality stream

(e.g., obtained from PW or AB), both referring to the same generated baseline stream

ŝk.

The purpose of the simulations was to show superiority of PW over AB since PW

uses a more reliable context to deal with errors and events. In all experiments with

generated data minAllConf = 0.25 is used.

We considered two types of errors: offset errors and variance degradation errors [41],

where (I) an offset error is generated by adding a random value from interval [−2.5, 2.5]

to a sensor value and (II) variance degradation error is generated, by sampling from

N (0, 1) (i.e., normal distribution with mean 0 and variance 1) and adding it to a sensor

value. For experiments with errors (faulty sensors), sensors are randomly selected to

contain variance degradation or offset errors. Half of these sensors will contain variance

degradation and the other half will contain offset faults. The total number of faulty

sensors is specified in each experiment. A sensor selected as faulty remains faulty for a

duration of 1 to 10 time units (randomly chosen), but with different amount of error at

each time unit. Every 40 time units a new set of sensors is randomly selected as the set

of faulty sensors.

We simulated events by randomly placing event sources in the experiment region.

Each event e has a fixed duration τe and occurs every te time units. Each event source

Oe emits a signal that is dispersed based on a two dimensional Gaussian function. Given
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Figure 5.5: Root mean squared error of different PW and the baseline AB instances in
generated streams. PW(x) means PW with minRelSup = x. PW results in more than
three times lower RMSE compared to the baseline.

event e from an event source located at (xe, ye), which has started at time tse, the event

value at location (x, y) at time tse ≤ t ≤ tse + τe is given by:

v(x, y, t) = αe,te
(xe−x)2

2σ2x,t
+

(ye−y)2

2σ2y,t , (5.8)

where αe,t is the magnitude of the event at time t, σx,t and σy,t are the dispersion

parameters on the x and y axes at time t. The sensor located at (x, y) takes v(x, y, t) as

its value if v(x, y, t) > γe, where γe is the event impact threshold (i.e., the sensor cannot

detect the event otherwise). αe, σx, σy are the original values at event start time for

magnitude, and dispersion parameters over x and y axes. Event propagation is modeled

by increasing σx and σy as t − tse increases. Signal degradation is modeled by reducing

αe as t − tse increases. This model simulates diffusion events (e.g., a gas leakage) that

happen in fixed intervals and are slowly dispersed around the event sources (e.g., leakage

point) and vanish over time. If multiple events exist at the same time, sensors take the

maximum value generated by the events at their locations.

5.4.3 Experiments with Generated Data

We evaluated the effectiveness of PW using 64 sensors in a region of 8× 8 grids, where

the generated sensor values were from a range [10, 50] and the stream size was 10000

time units. quality values were computed for all sensor values in the stream segment

[9990, 10000].

5.4.3.1 Errors

In the first experiment we considered only errors (faulty sensors). PW was run with

minRelSup equal to 0.0075, 0.01, and 0.0125, respectively. AB was run with three

neighborhood sizes r = 2, r = 3, and r = 4, that correspond to 12, 28, and 48 sensors,
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Figure 5.6: Average runtime of PW with different minRelSup values in generated
stream. 10% of sensors are faulty.

respectively. Clearly, PW considers all the 64 sensors for finding context. Figure 5.5

presents the results, where the percentage of faulty sensors was 0% (clean data), 5%,

10%, and 15%. PW significantly outperforms the baseline, where RMSE of PW is more

than two times lower than that of AB with r = 2 and more than three times lower

than that of AB with r = 4. AB with r = 2 performs better than AB with r = 3 and

r = 4. The reason is that the probability of having multiple faulty sensors in a small

neighborhood is low. Clearly, PW performs better in terms of RMSE as we decrease the

minRelSup parameter since PW is able to find a longer context. The reduction in error

is achieved at the cost of higher execution time as Figure 5.6 illustrates.

5.4.3.2 Events

In the second experiment we calculated the quality for the stream segment [9900, 10000]

of the sensor located in grid (3, 3) in the presence of only events. Four event sources

Oe1 , .., Oe4 were placed in the simulation region that generate non overlapping events

every 50 time units. We set τe1 = 5, τe2 = 10, τe3 = 12, and τe4 = 12 as duration

of events, the magnitudes of the events are αe and dispersion parameters σx and σy.

The event impact threshold γe, was set to 12 for all events. With respect to event

e1, as an example, the number of sensors affected by the event is 3, 3, 7, 11, 17 at

t = tse1 , (t
s
e1 + 1), . . . , (tse1 + τe1 − 1), respectively. Figure 5.7 presents the results, where

PW outperforms AB. In particular, when the sensor value is affected by events (denoted

by disconnected horizontal lines), PW assigns a high quality while AB treats events as

errors and assigned a low quality. This confirms our intuition since PW uses a more

reliable context than AB.
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5.4.3.3 Errors and events

In the third experiment, we combined the error and event models as defined for the

first and the second experiment respectively. Figure 5.8 presents the results, where PW

performs more than two times better than the baseline with or without errors in data.

The reason is that introducing events reduces the strong spatial correlation between

neighboring sensors, which is the essential requirement of AB. RMSE for AB is almost

unaffected by increasing the noise level. This can be explained by the fact that AB

already gives a low quality to the values affected by the events.

5.4.4 Experiments with Real Data

We used temperature readings from a collection of 64 sensors deployed in Switzerland

as part of SwissEx project [4]. The dataset contains 15000 records sampled every 30

minutes. Missing values were replaced by interpolation using available values of the

sensors. In this experiment we assumed that the data was clean in order to be able to

use the generated ground truth quality.

In this experiment we considered the influence of both errors and events. We set

misRelSup = 0.0075 and minAllConf = 0.1. One simulated event source with duration

of 5 time units was placed into the region, which generated a new event every 50 time

units. Figure 5.9 presents the results, where PW performs two times better than AB in

terms of RMSE. PW results in slightly higher RMSE as we increase the number of faulty

sensors. This is due to the fact that injecting noise in the data reduces the frequency

of interesting patterns and leads to a drop in quality, which is desired for noisy tested

values.
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Figure 5.8: Root mean squared error of PW when simulated events and faults are
introduced in generated streams, where minRelSup = 0.01. PW achieves two times
lower error than the baseline.

5.5 Related Work

In Chapter 2 we provided an extensive review of the related work. We can distinguish

our approach from the existing approaches for quality assessment and outlier detection

in sensor networks as the following. (I) Contrary to the previous methods such as [30,

71, 75, 76, 96], which suffer from the choice of the fixed neighborhood, we do not restrict

our method to using a predefined fixed neighborhood. In our approach, the sensors in a

neighborhood are not necessarily spatially proximate. The neighborhood is dynamically

determined based on the frequent patterns identified in the sensor readings over time.

(II) While model-based methods such as [15], and classification-based approaches such

as [36, 71, 96, 133] require the knowledge of the statistical model of the sensor readings,

our pattern-wise method only works based on the value of the sensors and no background

information is needed. (III) We do not make any assumption on the structure of the

sensor network. The only input from the sensor network to the pattern-wise approach

is the sensor data streams.

In [138] an algorithm for event detection that is based on contour map matching

was presented. Thus, it converted the event detection problem into a pattern matching

problem. The motivation was to address disadvantages of the threshold-based methods

for event detection, where the threshold-based methods are based on the assumption

that if sensor values exceed a certain (user defined) threshold then an event has oc-

curred. It pointed out that such threshold, although simple, are inappropriate for the

following reasons: (I) it is difficult to specify proper thresholds given differing environ-

ments to be monitored and application semantics and (II) events, where the magnitude

of the observed event decreases with distance from its source (diffusion events) cannot

be easily captures by discrete threshold values. The proposed method constructs and

incrementally updates a number of contour maps that are used as building blocs for con-
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structing spatio-temporal patterns exhibited in contour maps. The paper also identified

three types of common events with respect to the shape of their contours in the map:

pyramid, fault and island.

In [77] different optimization techniques for speeding up mining frequent value set in

sensor networks were presented, using interval lists consisting of intervals during which

the sensor assumes a given value. They coupled the idea of interval list with approximate

itemset mining and derived an online algorithm for mining frequent itemsets from large

a SN.

In [108] an approach for distributed mining of spatio-temporal event patterns in

SN was presented. The algorithm proceeds as follows: (I) every sensor in the network

continuously collects user defined events from neighboring sensors within a fixed distance

and keeps a history of a fixed size of these events and (II) every sensor runs a mining

algorithm for discovering patterns among these collected events. The main idea of the

approach was to transmit to the sink only the compact patterns mined at sensors.

5.6 Conclusion

In this chapter we presented the first pattern-wise method for quality assessment of

sensor data that addresses the limitations of the state of the art approaches by departing

from the idea of a fixed neighborhood. Using frequent itemset mining, the method finds

the values from multiple sensor data streams that frequently co-occur with the tested

value. The logistic regression function was used to produce the quality score of the tested

value given specific features of the frequent itemset. The performance of the pattern-wise

approach regarding quality score computation error was compared to the performance

of the common average-based approach. Experimental results confirmed superiority of

the proposed method over the average-based approach.
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Chapter 6
Conclusion and Future Directions

6.1 Conclusion

In this thesis we considered some important data management problems in participatory

sensing systems and proposed efficient solutions for those problems. In particular, we

looked at the problem of efficient data acquisition in participatory sensing, where several

factors must be considered concurrently while collecting data from participants and

answering user queries. Incentivizing participants to truthfully provide their private

cost information and measurements was another important problem that we considered

in this thesis. Finally, we proposed a novel approach towards assessing the quality of

sensor readings based on frequent pattern mining methods.

We proposed a holistic data acquisition framework for participatory sensing envi-

ronments, in which we incorporated the most important parameters pertinent to this

paradigm, such as uncontrolled mobility, privacy, trust, costs, and utility. Based on the

argument that in such systems, the type of applications and queries that are posed by

the applications can be diverse, the proposed framework was designed to be as generic as

possible. We formulated the problem of optimal multi-query data acquisition with the

objective of maximizing the total utility for the applications. Since finding the optimal

solution is computationally intractable in many cases, efficient heuristic algorithms were

proposed to myopically maximize the total utility for some of the most important query

types and their combinations. In particular, we proposed utility-driven data acquisition

algorithms for point and aggregate queries, which are examples of one-shot queries, lo-

cation and region monitoring queries, which are examples of continuous queries, and the

combination of these individual query types.

The proposed utility-driven framework for data acquisition in participatory sensing

would not be useful if the participants misreport their cost information and their mea-

surements. In order to incentivize the participants to truthfully report their data, we

designed incentive compatible and individually rational mechanisms for data acquisition
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in participatory sensing as part of this thesis. The proposed mechanisms were designed

for data acquisition for point queries with the objective of maximizing the utility of the

center (or applications). We considered two cases, where the participants are privacy

oblivious, i.e., they are willing to report their exact location, and where the participants

are privacy conscious, i.e., they are not willing to reveal their exact locations. In case

of privacy conscious participants, we proposed mechanisms for enabling them to trade

their privacy for more monetary incentives.

Lastly, we presented the first pattern-wise method for quality assessment of sensor

data that addresses the limitations of the state of the art approaches by departing from

the idea of a fixed neighborhood. Using frequent itemset mining, the method finds the

values from multiple sensor data streams that frequently co-occur with the tested value.

The logistic regression function was used to generate a quality score for each sensor value,

given carefully chosen features of their frequent itemset on other sensor data streams.

Experimental results confirmed superiority of the proposed method over the commonly

used average-based approach.

6.2 Future Directions

The work described in this thesis can be extended and enhanced in several different

ways. We suggest the following research directions as future work.

6.2.1 Data Acquisition in Participatory Sensing

In relation to the proposed utility-driven approach for data acquisition in participatory

sensing systems (Chapter 3):

• We can take advantage of the mobility knowledge of sensors having controlled or

semi-controlled mobilities, such as the sensors mounted on public transport vehi-

cles, whenever such sensors exists. The existence of such sensors can significantly

help acquiring data for all query types, in particular for continuous queries, and

therefore increase the utility of the system.

• Event detection queries are one important class of queries in participatory sensing

with different requirements compared to monitoring queries. Efficient data acquisi-

tion mechanisms for event detection queries should be investigated as an extension

to the presented data acquisition approach for monitoring queries.

• In the presented data acquisition algorithms, we assumed that a trust assessment

or reputation management mechanism was in place that assigns trust values to the

sensors. However, these mechanisms often have direct impact on data acquisition

because they might require redundant measurements. Therefore, the proposed

algorithms should be extended to account for the data requirements of trust or

reputation management mechanisms.
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• A common approach towards protecting location privacy of the participants is that

they employ a privacy protection mechanism that obfuscates their locations. In the

proposed approach, we assumed that the participants precisely report their location

to the aggregator. In presence of this sort of privacy protection mechanism, the

proposed approach needs to be extended to account for the obfuscated location

reports.

• In scenarios where the participatory sensing system forms a distributed data collec-

tion and processing environment without a centralized entity, the proposed mech-

anisms must be adapted. Efficient solutions should be provided for distributed

utility-driven sensor discovery, data acquisition, and query processing in partici-

patory sensing.

6.2.2 Truthful Data Acquisition

With regard to the proposed mechanisms for truthful data elicitation in participatory

sensing (Chapter 4):

• As an important extension to the proposed mechanisms, we should relax the as-

sumption that the ground truth is always available. Using redundancy is a po-

tential solution, which introduces interdependent valuations for agents. Another

solution is to employ environmental models as the ground truth. Combining these

two solutions would certainly yield better results.

• The presented mechanisms incentivize the participants to truthfully reveal their

data by providing monetary incentives to them. However, there might exist some

malicious participants who obtain more benefit by reporting falsified data. There-

fore, it is important to combine the proposed approach with trust assessment or

reputation mechanisms to identify malicious participants and to promote honest

data reporting.

• Extending the proposed mechanisms for truthful data elicitation for answering

other query types introduced in Chapter 3 is another important future work.

6.2.3 Quality Assessment of Sensor Data Streams

In relation to the proposed approach for quality assessment of sensor data streams (Chap-

ter 5):

• Fast quality score computation in high rate sensor data streams is an essential

requirement for applicability of the proposed frequent pattern-based approach.

Therefore, the algorithm should be further optimized. The optimization can

be done, for example, by applying techniques including: (I) incremental item-

set mining, (II) approximate itemset mining, (III) segmentation of sensors and

sub-sampling, and (IV) interval lists in the spirit of [77].
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• The proposed approach for quality assessment assumes that the sensor are station-

ary. In participatory sensing, however, most of the sensors are mobile. Therefore,

the proposed approach cannot be readily applied for quality assessment in partic-

ipatory sensing and needs to be adapted to the case of mobile sensors.

• Inconsistencies in sensor data can be due to malicious acts of some users who

obtain benefits by tampering with the sensor readings with the goal of breaking

the trust assessment mechanism, e.g., by introducing artificial repeated patterns

in the data. As a future research direction, the impact of this kind of malicious

behavior and the countermeasures against it can be investigated.
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